
.

The Power of Opaque Products in Pricing

Adam N. Elmachtoub
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, 10027,

adam@ieor.columbia.edu

Michael L. Hamilton
Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260 mhamilton@katz.pitt.edu

We study the power of selling opaque products, i.e., products where a feature (such as color) is hidden from

the customer until after purchase. Opaque products, which are sold with a price discount, have emerged as

a powerful vehicle to increase revenue for many online retailers and service providers that offer horizontally

differentiated items. In the opaque selling models we consider, each of the items are sold at a single common

price alongside opaque products which may correspond to various subsets of the items. We consider two types

of customers, risk-neutral ones who assume they will receive a truly random item from the opaque product,

and pessimistic ones who assume they will receive their least favorite item from the opaque product. We

benchmark opaque selling against two common selling strategies: discriminatory pricing, where one explicitly

charges different prices for each item, and single pricing, where a single price is charged for all the items.

We give a sharp characterization of when opaque selling outperforms discriminatory pricing. Namely, this

result holds for situations where all customers are pessimistic, or the item valuations are supported on two

points. In the latter case, we also show that opaque selling with just one opaque product guarantees at least

71.9% of the revenue from discriminatory pricing. We then provide upper bounds on the potential revenue

increase from opaque selling strategies over single pricing, and describe cases where the increase can be

significantly more than that of discriminatory pricing. Finally, we provide pricing algorithms and conduct an

extensive numerical study to assess the power of opaque selling under for a variety valuation distributions

and model extensions.
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1. Introduction

An opaque product is a product where one or more features (such as color, brand, or

location) are hidden from the customer until after the purchase is made. In recent years,

several online retailers have begun selling opaque products. For example, Amazon.com

offers various colors of Swingline staplers alongside a “colors may vary” option, which is an

opaque product over the various colors (see Fig. 1). In another example, SwimOutlet.com

offers various styles of Nike swimsuits, as well as a “Grab Bag” over all the different styles

offered (see Fig. 2).
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Figure 1 Opaque Selling on Amazon.com.

Note. Swingline offers their “SmartTouch” staplers on Amazon.com traditionally alongside a “colors may vary” option

i.e., a single opaque product where the color of the stapler is hidden until after purchase. The opaque product is

offered at the discounted price of $15.99, which is $1.63 less than the traditional price of $18.62.

Figure 2 Opaque Selling on SwimOutlet.com.

Note. SwimOutlet.com offers various styles of Nike brand swim trunks for prices between $43.00-$50.00 alongside an

opaque “Grab Bag” for $23.00.

In both of these examples, customers who purchase the opaque product sacrifice exact

knowledge of the item they will receive in exchange for a price discount. This allows

the seller to price discriminate between customers with strong and weak preferences, and

therefore earn more revenue. The goal of this work is to showcase the power of opaque

selling compared to more traditional price discrimination tactics, and quantify the potential

extra revenue that a seller can obtain.

In our framework, we consider a seller offering N items, each of which are similar but may

differ in a secondary attribute such as color or style. Customers draw valuations for each

of the items from a joint probability distribution that is known to the seller. We focus on
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the class of exchangeable distributions which naturally represent horizontally differentiated

items (see Definition 1 for a formal definition). Exchangeable joint distributions have the

properties that (i) the marginal distribution of each item is identical, capturing the notion

of horizontal differentiation, and (ii) there can be (some form of) correlation between the

items. Special cases of exchangeable distributions include i.i.d. valuations, the Hotelling

model, and Salop’s circle model (when the number of items is fewer than 3, see Section C

for an in depth discussion). In the absence of opaque products, customers simply choose

the item that maximizes their utility, i.e., their valuation for the item minus its price. No

item is purchased in the case where the utility from all items is negative.

Interestingly, when the valuation distribution is exchangeable (even i.i.d.), the optimal

pricing strategy in this model may use different prices for different items (Chawla et al.

(2007)). This strategy, that we refer to as discriminatory pricing, is a natural benchmark for

our opaque selling strategies. Due to symmetry, discriminatory pricing arbitrarily chooses

some items to have high prices, e.g. in Fig. 12 customers who prefer blue are charged higher

prices. This may cause customers to think the pricing strategy is unfair, and it may be

particularly problematic when certain items (colors) that have a higher price are correlated

with demographic information such as race or gender. In some settings, the items are often

constrained to have the same price by the manufacturer or by regulatory bodies to ensure

impartiality to customers. Thus another natural benchmark to consider in this context is

the best single price strategy.

We now carefully describe our opaque selling strategy, where the seller offers opaque

products in addition to offering the N items. Specifically, an opaque product is an explicit

subset of items from which a customer will receive one item upon purchase. An opaque

selling strategy can offer all possible 2N −N − 1 opaque products alongside the N origi-

nal items. For practicality and tractability of the model, we assume that opaque products

corresponding to subsets of the same size must have the same price. Moreover, we impose

a restriction that the prices of the items must also be the same. This selling structure is

employed by the company Eurowings which sells round trip flights to opaque destinations

(see Fig. 3 and Post and Spann (2012)). In their setting, customers may narrow down

the possible destinations of their trip in exchange for an increased price. As a result, an

opaque selling strategy is parameterized by N prices, similar to a discriminatory pricing

strategy. However, customers interested in an item or opaque products of the same size
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always pay the same price, which prevents the opaque strategy from arbitrarily discrimi-

nating against customers that prefer specific items. In essence, an opaque selling strategy

balances the impartiality of a single price strategy with the price discrimination capability

of discriminatory item pricing.

Figure 3 Opaque products for travel services.

Note. Eurowings.com uses an opaque selling strategy to offer airline tickets with a base price of e66.00. Here the

destination of the flight is opaque, with N = 12 possible destinations. The site allows the customer to exclude as

many destinations as they desire, where each exclusion adds an additional e5.00 to the price. In the figure above,

three destinations are excluded and the price for the desired opaque product is e81.00.

In order to study opaque selling strategies, we must also specify how customers value an

opaque product. In practice, the seller never reveals the probabilities of receiving individual

items in an opaque product, leaving the customers to formulate their valuations based on

their judgment. We consider two types of customers motivated by realistic interpretations

of opaque products, which we call pessimistic and risk-neutral. A customer is said to be

pessimistic if they value an opaque product as the minimum of their valuations among

the corresponding subset of items. A pessimistic customer essentially wants an ex-post or

worst-case guarantee that purchasing the opaque product yields positive utility. Such an

assumption is particularly natural when some of the items are infeasible for the customer

(e.g., unfavorable colors or incompatible destinations). Another reason a customer may be
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pessimistic is that they are fundamentally mistrustful of the seller’s motives, and fears the

seller will allocate the product they desire least.

A customer is said to be risk-neutral if they value an opaque product as the average of

their valuations among the corresponding subset of items. A risk-neutral customer is essen-

tially optimistic, and believes that the seller is impartial in the sense that the probability

of receiving any item in an opaque product is uniformly distributed. Such an assump-

tion is natural when the customer has to no reason to believe the seller knows their item

preferences (for example a first time customer or anonymous online customer). Although

uniform allocation and risk-neutral risk preferences may not always apply to all sellers and

customers, the risk-neutral assumption has been the dominant assumption in the litera-

ture. In this work we study the power of opaque selling in markets consisting of mixtures

of both customer types. We use α to denote the probability that a customer is pessimistic

and call such markets α-mixed.

We next outline our contributions, which formally describe conditions under which

opaque selling performs well with respect to discriminatory and single pricing strategies.

1. We give sufficient conditions for when opaque selling dominates the optimal discrimi-

natory pricing strategy. In particular, we show opaque selling is guaranteed to provide

at least as much revenue as discriminatory pricing when the valuations are drawn

from an exchangeable distribution and either of the following conditions hold: (i) the

market is homogeneously pessimistic or (ii) the valuations can only take two val-

ues (high or low), and supply counter-examples when neither condition is satisfied.

Intuitively, under these conditions the customers naturally separate into sufficiently

distinct groups that allows an opaque strategy to effectively price each group. On the

other hand, discriminatory pricing can effectively price against only a subset of cus-

tomers whose ranking of the items correspond to the ranking of the item prices. One

surprising consequence of our result is that the seller may benefit when customers are

pessimistic, thus sellers may be encouraged to not reveal the opaque product allocation

probabilities in the hopes that customers adopt a worst-case valuation.

2. In the important special case when valuations are drawn from an exchangeable dis-

tribution and can only take two values, we show a single opaque product can always

guarantee at least 71.9% of the revenue from discriminatory pricing. This result is

independent of the fraction of the customers that are pessimistic.
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3. We then show that in α-mixed markets, opaque selling can earn up to and at most a

factor of αN more than the best single pricing, and there are instances where opaque

selling earns α
2

N
1+log(N)

more than discriminatory pricing. We complement this result

by showing that in the restricted case of i.i.d. valuations, these gap falls to constant

factors. We also show that offering just a single opaque product can increase revenue

by up to and at most a factor of 2− (1−α)N−1
N

over the best single pricing.

4. We perform an extensive numerical study which bears out our results for several typical

distributions. To conduct the study we first derive an efficient algorithm for finding

the optimal prices when N is small. We empirically observe that the seller earns more

revenue as α, the fraction of pessimistic customers, increases. We also see up to a 5%

increase in revenue using opaque selling compared to discriminatory pricing. We next

show that α can be effectively estimated from a modest amount sales data and induce

opaque selling strategies that garner nearly all the available revenue. Further, even

when the underlying assumptions of the model are violated, we show that using our

opaque selling framework can still generate effective pricing strategies.

Taken together, our results provide strong support for opaque selling as a customer-

friendly alternative to discriminatory pricing, often achieving comparable or higher rev-

enues.

1.1. Literature Review

Our work connects into several streams of literature across operations, marketing, eco-

nomics, and computer science. We first review literature on monopolistic sellers offering

opaque products. The parallel works of Jiang (2007) and Fay and Xie (2008) both con-

sider opaque selling frameworks when customers have valuations drawn from a Hotelling or

Salop’s circle choice model. Note that this assumes perfect correlation between the items,

and may not necessarily represent customer behavior well although it does fall into the

exchangeable distribution assumption. Both works provide conditions for when opaque

selling can have strictly positive increase in profit over single pricing strategies. Fay and

Xie (2008) also show that opaque products can be used to hedge against possibly incor-

rect demand estimation. Our work does not make any assumption about the valuation

distribution, and benchmarks primarily against discriminatory pricing.

A separate stream of work has shown the power opaque products for managing capacity

and inventory. Gallego and Phillips (2004) and Gallego et al. (2004) considers the notion
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of a flexible product in revenue management, where customers who buy the flexible option

are allocated a product after the completion of the time horizon. Fay and Xie (2014)

show how to use opaque products to protect inventory when one of the two items is

strictly preferred over the other by all customers, and Xiao and Chen (2014) provide

dynamic programming algorithms to decide when to use opaque products. Elmachtoub and

Wei (2015), Elmachtoub et al. (2019) quantify the value of opaque products in real-time

inventory management environments. In our work, we avoid any notion of cost and focus

purely on the price discrimination effect offered by opaque products.

There are several works on opaque products when used among competitors (Shapiro

and Shi (2008), Jerath et al. (2010)), in name-your-own-price channels (Chen et al. (2014),

Huang et al. (2017)), in empirical analysis (Xie et al. (2016), Granados et al. (2018)), and

in queueing systems (Xu et al. (2016), Geng (2016)). Post and Spann (2012) and Post

(2010) consider settings where multiple opaque products are offered simultaneously. We

also mention a stream of work in economics that considers optimal mechanism design with

opaque products, along the lines of Balestrieri et al. (2015), and Balestrieri and Izmalkov

(2016).

Our results related to purely risk-neutral markets (α = 0) connects to a stream of lit-

erature on pricing with lotteries. A lottery, as described in the literature, is a probability

distribution over the items that is sold by the seller and announced to the customer. Cus-

tomers are risk-neutral and use the expected valuation of the lottery when deciding what

to buy. If all customers are risk-neutral, then our opaque selling strategy can be thought

of as a special case of lottery pricing where the items are allocated uniformly at random.

Under arbitrary valuation distributions, Briest et al. (2015) and Hart and Nisan (2014)

show that lottery pricing can earn infinitely more revenue than any discriminatory pricing

when N ≥ 3 and N = 2, respectively. When customers draw their valuations independently,

Chawla et al. (2015) show the optimal lottery pricing earns at most four times discrimina-

tory pricing.

Our work is also related to, and draws on, the algorithmic pricing literature which stud-

ies when pricing can compete with richer classes of selling mechanisms. When valuations

are independent, Chawla et al. (2007, 2010), Alaei et al. (2019) show that an optimally

chosen single price strategy is a constant factor approximation to the revenue of an opti-

mal discriminatory pricing. Cai and Daskalakis (2011) then provide a polynomial-time
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approximation scheme for computing the optimal discriminatory pricing when valuations

are drawn independently, while Chen et al. (2018) show the problem is NP-Hard even when

valuations are drawn i.i.d. or drawn independently and supported on three points.

We note that our work resembles that of bundle pricing on the surface due to the nature

in which items are aggregated into opaque products, although bundling results generally

assume customers are interested in purchasing multiple items. The one exception is that of

Briest and Roglin (2010) who frame opaque products as ‘unit demand bundles’ and provide

hardness results. Finally, our work fits in parallel to recent work on simple mechanisms for

problems in auctions (Celis et al. 2014, Hartline and Roughgarden 2009, Alaei et al. 2019,

Jin et al. 2019), bundling (Ma and Simchi-Levi 2016, Abdallah et al. 2017), and first or

third-degree price discrimination (Elmachtoub et al. 2018, Bergemann et al. 2020).

2. Selling Models

We now formally describe the selling models that we study throughout this work. We con-

sider a seller who has N ≥ 2 items for sale, described by the index set [N ] := {1,2, . . . ,N}.
The seller may also offer one or more opaque products, each of which is described by a

subset S ∈ 2[N ] where |S| ≥ 2. The seller simultaneously offers the items and potentially

some number of opaque products to a utility-maximizing, unit-demand customer. (Note

that this is equivalent to selling to many customers with no inventory constraints.) The

customer has a non-negative random valuation for each item i denoted by Vi, and the joint

valuation V = (V1, V2, . . . , VN) is drawn from a known joint distribution F . For every selling

model we consider, the customer maximizes their own utility, which is the valuation of the

item or opaque product purchased minus its price. If no item or opaque product results in

a non-negative utility, then the customer does not purchase anything. In the case where

the customer has multiple options that maximize their utility, we assume without loss of

generality, that the customer purchases the product with the highest price (see Chen et al.

(2018) for detailed discussion of tie-breaking rules in this context). When there are multiple

products with the same price providing maximum utility, we assume the customer breaks

ties arbitrarily.

We note that the notion of valuation and utility described thus far does not extend in

an obvious way to opaque products. That is, the way a customer values an opaque product

depends on the customer’s belief about the seller’s allocation process and the customer’s

personal risk preferences. Next, we describe two natural frameworks for modeling valuations

of opaque products.
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2.1. Valuations for Opaque Products

We model the customer’s valuation for an opaque product as a function over their valua-

tions for the items the opaque product can return. We consider two natural assumptions

for how to model customer behavior with respect to opaque products, which we call pes-

simistic and risk-neutral. For any subset of items S ∈ 2N , we let V S denote the random

valuation of the opaque product corresponding to S. For pessimistic customers, V S is the

minimum over all the valuations in S, and for risk-neutral customers, V S is the average

over all the valuations in S, i.e.,

(Pessimistic) V S = min
i∈S
{Vi}, (Risk-Neutral) V S =

∑
i∈S Vi

|S|
.

We assume that a customer is pessimistic with probability α and risk-neutral with

probability 1−α. We let Xα be the random variable corresponding to the customer type.

In practice, the seller never announces the allocation probabilities for an opaque product,

forcing the customer to form their own beliefs. A pessimistic customer believes the seller

will allocate the product that is desired least by the customer. Given that the allocation

probabilities are entirely unknown, this corresponds to a customer placing a worst-case

allocation distribution on the outcome of the opaque product. The pessimistic preference

also captures another important and practical situation where even if the customers know

the opaque allocation probabilities, they are extremely risk-averse. In other words, the

customer wants their purchasing decision to be ex-post optimal, i.e., there is no regret even

after the item in the opaque product is revealed. This particular situation can arise when

customers know that certain items provide no value, which can happen when particular

colors or flight destinations are completely undesirable (see Figures 2 and 3).

A risk-neutral customer believes that the seller will allocate the items in the opaque

product uniformly at random, which is an optimistic belief. With respect to this fair

allocation, they are also risk-neutral in their valuation of the opaque product. Thus, a

risk-neutral customer simply averages their valuations across the product, even though

the allocation is most likely not uniformly at random. With limited information, it is

natural for some customers to form this valuation, in particular when the valuations of each

item are reasonably close together (in which case the difference between risk-neutral and

pessimistic is small). Furthermore, in some special cases it is ex-ante revenue optimal for

the seller to design the allocation of opaque products in a balanced way, conforming to and
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lending additional motivation for the risk-neutral assumption. We explore this idea further

in Appendix A. We also note that the risk-neutral assumption has been the primary focus

in the literature (Gallego and Phillips (2004), Fay and Xie (2008), Jerath et al. (2010)),

while the pessimistic case has not been studied to our knowledge.

Finally, we highlight that the delineation between pessimistic and risk-neutral customers

is quite important from a technical perspective. Fig. 4 illustrates this distinction geomet-

rically in the valuation space in the case where N = 2. Note the shape and size of the

valuations regions where customers purchase the opaque product are quite different, which

explains the dependence on α in our analysis.

Figure 4 Visualizing the valuation space.

(a) Valuation space for pessimistic customers (b) Valuation space for risk-neutral customers

Note. Above are two valuation spaces for opaque selling strategies with prices (p, p2) = (4,3). The darkened regions

correspond to customer valuations that yield purchases of an item at a price of 4. The lighter regions correspond to

purchases of the opaque product which has a price of 3. The unshaded regions correspond to valuations that result

in no purchase.

2.2. Selling Strategies

We now describe four specific selling strategies that we use throughout the work. For

notational convenience and improved exposition of this subsection, we assume that F is

continuous to avoid tie-breaking scenarios (which would go to the highest price option

w.l.o.g.). In the single price selling model (SP), the seller offers all N items all at the same

price. In other words, the price of item i is the same for all i∈ [N ]. We refer to this single
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price as p. We denote RF
SP (p) and RF

SP as the expected revenue using single pricing with

joint distribution F under price p and the optimal price, respectively. Formally,

RF
SP (p) = pP(max

i∈[N ]
{Vi} ≥ p) and RF

SP = max
p
RF
SP (p).

In the discriminatory pricing model (DP), the prices may differ between the items.

Without loss of generality, we always relabel the indices so that p1 ≥ p2 ≥ . . . ≥ pN . We

denote the vector of prices as ~p. We note that even when valuations are i.i.d., discriminatory

item pricing may provide strictly more revenue than single pricing strategies (Chawla

et al. (2007)). However, discriminatory pricing may be difficult for customers to accept

(especially when valuations are i.i.d.), and for similar reasons may be infeasible for the

seller due to business constraints. We denote the expected revenue under F using prices ~p

by RF
DP (~p) and the optimal item pricing by RF

DP . Formally,

RF
DP (~p) =

∑
i∈[N ]

piP
(
Vi− pi ≥max

j 6=i
{Vj − pj,0}

)
and RF

DP = max
~p
RF
DP (~p).

Although DP seems at first unnatural and counterintuitive when valuations are i.i.d.,

the revenue function creates a natural tension to segment the market and capture high

valuation customers without sacrificing market size. Every time an item is priced high,

selling another item at a low price becomes more valuable since its market share will

increase. Although DP can provide more revenue in many i.i.d. settings, including two

point (high-low) distributions, it may not be beneficial in other settings. For example,

when i.i.d. valuations correspond to a multinomial logit (MNL) choice model, the ‘constant

markup property’ (Anderson et al. (1992)) implies SP is optimal. We provide a longer

primer delving further into DP in Appendix B.

In the single opaque selling model (1OPQ), the seller offers only one opaque product

associated with the set [N ] at a price pN , alongside the traditional items all at a fixed price

p. This model is important and common in practice due to its simplicity, impartiality, and

ease of implementation. We denote the expected revenue under F , in α-mixed markets,

using prices (p, pN) by RF,α
1OPQ(p, pN) and the optimal pricing by RF,α

1OPQ. Formally,

RF,α
1OPQ(p, pN) = αpP

(
max
i
{Vi− p} ≥max{V [N ]− pN ,0}|Pessimistic

)
+αpNP

(
V [N ]− pN >max

i
{Vi− p,0}∩V [N ]− pN ≥ 0}|Pessimistic

)
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+ (1−α)pP
(

max
i
{Vi− p} ≥max{V [N ]− pN ,0}|Risk Neutral

)
+ (1−α)pNP

(
V [N ]− pN >max

i
{Vi− p,0}∩V [N ]− pN ≥ 0}|Risk Neutral

)
=EXα

[
pI
(

max
i
{Vi− p} ≥max{V [N ]− pN ,0}|Xα

)
+ pNI

(
V [N ]− pN >max

i
{Vi− p,0}∩V [N ]− pN ≥ 0}|Xα

)]
and RF,α

1OPQ = max
p,pN
RF,α

1OPQ(p, pN)

The first equation is derived by considering four events that generate revenue. The first

event is that a customer is pessimistic, which has probability α, and has a valuation

for their favorite item, maxi{Vi − p}, which is larger than the opaque product and 0,

max{V [N ] − pN ,0}. In this event, the customer buys an item and the seller earns p. The

remaining events are similar and enumerate the other cases where an opaque product is

purchased and/or the customer is risk-neutral.

In the general opaque selling model (OPQ), the seller offers all possible opaque products,

alongside the items which are offered at a single price p. For simplicity, tractability, and

impartiality, opaque products of the same cardinality are assigned the same price (see

Figure 3 for an example of this exact scenario). That is for all S,S′ ∈ 2[N ] s.t. |S|= |S′| ≥ 2,

the opaque products corresponding to the subsets S and S′ must have the same price. For

subsets of size k, the corresponding price is pk, and the vector of the N −1 opaque product

prices is denoted by ~p. We denote RF,α
OPQ(p, ~p) and RF,α

OPQ as the expected revenue under F ,

in α-mixed markets, using prices (p, ~p) and the optimal pricing, respectively. More formally,

RF,α
OPQ(p, ~p) =EXα

[
pI
(

max
i∈[N ]
{Vi− p} ≥ max

S∈2[N ],|S|≥2
{V S − p|S|,0}|Xα

)
+

∑
S∈2[N ],|S|≥2

p|S|P
(
V S − p|S| ≥ max

S′∈2[N ],|S′|≥2
{V S′ − p|S′|,0}∩V S − p|S| ≥max

i∈[N ]
{Vi− p}|Xα

)]
and RF

OPQ = max
p,~p
RF
OPQ(p, ~p).

In this expression, the expectation is taken with respect to the customer type, which affects

the opaque product valuations. The first summand corresponds to the revenue in the case

where an item is bought, and the remaining summands corresponds to the revenues of the

opaque products. Note an opaque product is sold only if it provides nonnegative utility

and has more utility than all of the items and other opaque products.
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We note that implementing the OPQ strategy in practice is simple, despite the exponen-

tially large number of products (see Figure 3). The seller simply displays the price ladder

corresponding to the size of the opaque product purchased, and then users simply select

(click) their top k products if they chose to purchase an opaque product of size k. We also

note that OPQ and 1OPQ are equivalent when N = 2. For readability we often omit the

superscripts F and α when they can be inferred from context. In general, subscripts always

refer to item prices (pi) and superscripts refer to opaque product prices (p|S|).

2.3. Valuation Distributions

In this work we focus on the class of exchangeable valuation distributions, which is a

generalization of i.i.d. valuations that allows for symmetric correlation between items.

Definition 1. We call the random valuation vector V = (V1, . . . , VN) exchangeable if

every permutation of the item valuations results in the same joint distribution. The corre-

sponding distribution is also said to be exchangeable in this case. �

Exchangeable valuation distributions are a natural model for horizontally differentiated

items as they allow for individual preferences between items, but enforce a distributional

symmetry as the items are all alike. One important example is the Hotelling model which

has been the primary focus of previous works (Fay and Xie (2008), Jerath et al. (2010))

which focus on scenarios with two items. Salop’s circle is a generalization of the Hotelling

model for more than two items, and is a standard choice model for capturing horizontal

differentiation (Salop (1979), Fay and Xie (2008)). When N = 3, Salop’s circle model is an

exchangeable distribution. For N ≥ 4, a more general, but complex, notion of exchange-

ability is needed to capture Salop’s circle. We provide this definition in Appendix C and

note that many of our results extend to this more general definition. For ease of exposition,

we shall focus on Definition 1 throughout the paper.

3. The Power of Opaque Products

In this section, we focus on the revenue from the general opaque strategy (OPQ) when

item valuations are drawn from an exchangeable distribution. In Sections 3.1 and 3.2, we

provide conditions for when the expected revenue of OPQ is guaranteed to exceed that of

discriminatory pricing (DP). When neither of these conditions hold, there is no dominance

in either direction, and we supply counterexamples where discriminatory pricing is better.

In Section 3.3, we quantify how much more revenue OPQ selling strategies can potentially
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earn over single pricing (SP), and show that the extra revenue garnered by OPQ strategies

can be on the order of αN more than DP. In the special case where item valuations are

i.i.d., we show this gap collapses to a constant factor.

3.1. Benchmarking against Discriminatory Pricing

We now give sufficient conditions for when OPQ is guaranteed to garner more revenue than

DP. In particular, we show that when all customers are pessimistic or when valuations

can take only two values (high or low), opaque selling is guaranteed to earn more revenue

than discriminatory pricing. In Example 1, we give a valuation distribution where neither

condition holds and RDP >ROPQ. This counterexample assumes valuations can take three

values, and assumes that 0 ≤ α ≤ .846. Next, we formally state our result in Theorem 1

and defer the proof to Section 3.2.

Theorem 1 (When OPQ dominates DP). Suppose customers are α-mixed and

draw their valuations from an exchangeable distribution. If (i) α= 1 or (ii) the item valu-

ations take only two values, then opaque selling dominates discriminatory pricing, i.e.,

ROPQ ≥RDP .

Interpretation and Implications of Theorem 1: While restricted, both cases of Theo-

rem 1 where the dominance result holds represent situations of significant interest. When

α is near 1, most customers assume a worst-case behavior with respect to opaque prod-

uct allocation. This situation may arise in markets where opaque products have been

recently introduced and there is no information for customers to be had. For markets

where customers tend to view a particular item (color or destination) as unacceptable,

this pessimistic behavior may also be common. A trivial implication of Theorem 1(i) is

that ROPQ ≥ αRDP , which follows from simply ignoring the revenue from all risk-neutral

customers. Thus in highly pessimistic markets where α is close to 1, an opaque selling

strategy is guaranteed to preserve almost all the gains from discriminatory pricing, and

potentially earn even more.

Further, we show in Corollary 2 that Theorem 1(i) extends to another important class

of distributions for horizontally differentiated items known as Salop’s circle, often used as

a standard tool in the literature. We provide a short primer on Salop’s circle model along

with the proof of Corollary 2 in Appendix C.
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When valuations are supported on two points, the market is highly differentiated and

has binary ‘high/low’ valuations for the items. This setting has been the subject of Fay and

Xie (2008), Huang and Yu (2014) in the literature on opaque selling. Note that the case

of binary valuations is exactly when discriminatory pricing is most profitable compared

to single pricing: Dutting and Klimm (2016) shows that for every N , there exists an

i.i.d. two point distribution such that RDP =
(
2− 1

N

)
RSP and that this is the largest

possible revenue gap. Thus in markets where retailers would be most inclined to consider

discriminatory pricing strategies, an opaque selling strategy is even more profitable.

It is important to note that when the conditions of Theorem 1 do not hold, that either DP

or OPQ may be preferred depending on the market assumptions. Thus it is worth noting

that OPQ may have other advantages over DP. For example, discriminatory selling can be

unnatural and undesirable for customers, particularly in the settings we consider where the

items only differ superficially. Charging different prices for what are essentially equivalent

products may increase revenue, however it may be perceived as unfair by customers (and

cause strategic behavior) or even disallowed by manufacturers altogether. In contrast, the

OPQ strategy is impartial and will never result in a customer paying more simply for

preferring a particular item (color). Collectively, we believe these arguments show that

opaque selling should always be considered as an alternative to discriminatory pricing, and

in many cases may result in more profit.

When the Conditions in Theorem 1 Are Not Met. Both the exchangeability and

sufficient conditions (α= 1 or two point valuations) for Theorem 1 are critical for the result

to hold. In Example 1, we construct a simple three-point distribution from which item

valuations are drawn i.i.d. and RDP >ROPQ for any α≤ .846. Thus Example 1 precludes

generalizing Theorem 1 to situations beyond two point valuations and purely pessimistic

markets. Surprisingly, it also implies that when α = 1, the revenue from OPQ may be

higher than when α = 0. In other words, the seller may actually benefit from customers

adopting a pessimistic attitude towards opaque products, as this helps segment the market

more favorably. In Example 2, we describe a valuation distribution that is not exchangeable

and where RDP >ROPQ

Example 1 (When Assumptions (i) and (ii) Do Not Hold). For N = 2, we con-

struct a three point distribution F where, when customers are risk-neutral, the optimal
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discriminatory selling strategy earns strictly more revenue than an opaque strategy. Let

α= 0 and suppose i.i.d valuations for two items drawn according to,

Vi =


0 : w.p 8/27

.1 : w.p 2/3

.9 : w.p 1/27

Then using the algorithm described in Theorem 7 we can compute RSP = ROPQ =

0.091220... < 0.0913 achieved by pricing both items at 0.1. However RDP (0.9,0.1) = 0.1,

11% more revenue than the optimal opaque selling strategy.

Further, it can be computed that when α> .69231, the optimal opaque pricing switches

from (.1,.1) to a mixed pricing (.1,.9) earning revenue ≈ α(1.08779) + (1− α)(.0517146).

The revenue from this optimal mixed opaque selling strategy overtakes the revenue from

discriminatory pricing when α > .846. Thus for α < .69231, RSP =ROPQ <RDP . For α ∈
(.69231, .846), RSP <ROPQ <RDP . For α> .846, RSP <RDP <ROPQ. �

Example 2 (When Exchangeability Does Not Hold). Consider a market where

N = 2 and α = 1, and where valuations for two items are drawn independently from V1,

which is two times a Bernoulli r.v. with probability 1/2, and V2 which is distributed as a

Bernoulli r.v. with probability 1/2. Since V1 and V2 are independent but not identical, the

market is therefore not exchangeable. However, by a simple enumeration, one can see that

RDP (2,1) = 5
4

whereas R1OPQ ≤ 1. �

Geometric Proof of Theorem 1 when N = 2 and α= 1. Before delving into the formal

proof in Section 3.2, we provide some geometric intuition in the special case when N = 2

and α = 1. Suppose the optimal discriminatory pricing uses prices (p1, p2) with p1 > p2.

We show that an opaque selling strategy with prices (p, p2) = (p1, p2) exceeds the revenue

of the optimal discriminatory pricing. Fig. 5a and Fig. 5b show the different purchase

behaviors under OPQ and DP, respectively, where a darker color corresponds to a more

expensive customer purchase. Due to exchangeability, it is then visually clear that the

following are all equal: (i) the revenue of OPQ conditioned on V1 ≥ V2, (ii) the revenue

of OPQ conditioned on V2 ≥ V1, and (iii) the revenue of DP conditioned on V1 ≥ V2. To

complete the proof, we claim that the revenue of DP conditioned on the event V1 ≥ V2 is

at least the revenue of DP conditioned on the event V2 ≥ V1. If this were not the case, then

reducing p1 to p2 would increase the revenue in the event that V1 ≥ V2 without changing

the revenue in the event V2 ≥ V1, which would contradict the optimality of (p1, p2).
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Figure 5 Geometric proof of Theorem 1(i)

(a) Valuation space for pessimistic customers fac-

ing a OPQ strategy with (p, p2) = (5,3). Note the

purchasing behavior is symmetric across the line

V2 = V1.

(b) Valuation space for a customer facing a DP

strategy with (p1, p2) = (5,3). Note that below

the line V2 = V1, the purchasing behavior in (a)

and (b) are identical.

Note. The valuation space and purchasing behaviors for a pessimistic customer facing OPQ and DP selling strategies

respectively. Customers with valuations in the darkened regions buy at price 5 in both figures. Customers with

valuations in the lightly shaded regions buy at price 3 (i.e., purchase the opaque product or item 2, respectively).

Customers in the unshaded region do not purchase.

One interesting consequence of this geometric argument is that, when N=2 and α= 1,

RDP ≤ ROPQ+RSP
2

. Suppose that RDP = (1 + γ)RSP , for some γ > 0. Then rearranging

RDP ≤ ROPQ+RSP
2

gives

ROPQ ≥
1 + 2γ

1 + γ
RDP

which implies the inequality in Theorem 1 is strict whenever RDP >RSP . In Corollary 1

we expound on this observation to show more generally, whenever the conditions of The-

orem 1(i) are met, and RDP >RSP , it follows that ROPQ >RDP .

When the conditions of Theorem 1(ii) hold, no such result can be shown. When α is

small, there are cases when RDP =ROPQ even if RDP >RSP , see Fig. 6c for an example.

Instead we show an analogous result for when the conditions of Theorem 1(ii) are met,

RDP >RSP , and when α is sufficiently large, it follows that ROPQ >RDP . The proof can

be found in Appendix I.1.

Corollary 1. Suppose customers are α-mixed and draw their valuations from an

exchangeable distribution. Suppose DP earns more than SP and let γ > 0 denote the gap,

i.e., RDP = (1 + γ)RSP .
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(i) If α= 1, then

ROPQ >
1 + N

N−1
γ

1 + γ
RDP .

(ii) If the valuations are supported on two points and α≥ 1− γ
γN+N−1

, then

ROPQ >α

(
1 +

γ

(N − 1)(1 + γ)

)
RDP .

3.2. Proof of Theorem 1.

Proof of Theorem 1. We will consider the two cases separately.

Case (i): Let α = 1, F be an exchangeable distribution over N items, and w.l.o.g. let

p1 ≥ p2 ≥ . . . ≥ pN be the optimal prices corresponding to RDP . For ease of exposition

we assume F is continuous and ignore ties, although the same argument follows when F

is not continuous and one carefully considers the tie-breaking procedure. Let Σ be the

set of permutations σ : [N ]→ [N ], and let σ(i) be the mapping of index i under σ. For

every σ ∈ Σ, define the event Eσ := {Vσ(1) ≥ Vσ(2) ≥ . . .≥ Vσ(N)}. Note that each {Eσ}σ∈Σ

is equally likely by exchangeability. We define qi|σ to be the probability of a customer

purchasing i under the DP strategy (p1, . . . , pN) conditioned on the event Eσ. We define

Rev(p1, . . . , pN |σ) to be the expected revenue of the DP strategy conditioned on the event

Eσ, i.e.,

Rev(p1, . . . , pN |σ) =
N∑
i=1

piqi|σ.

Define σ∗ such that Rev(p1, . . . , pN |σ∗)≥Rev(p1, . . . , pN |σ) over all σ ∈ Σ, i.e., Eσ∗ is the

event that leads to the most revenue. This implies that Rev(p1, . . . , pN |σ∗)≥RDP .

Now consider an opaque selling strategy OPQ that uses prices pi = pσ∗(i). (Note that p1

is the price of the items.) We shall show that this opaque strategy has expected revenue of

at least Rev(~p|σ∗). Under our opaque strategy, we call the probability of a customer buying

an opaque product of size i to be qi and the probability of a customer buying an item to

be q1. We let V (i) be the ith order statistic such that V (1) = maxi{Vi} and V (N) = mini{Vi}.

We now show that qi = qσ∗(i)|σ∗ for all i by

qi = P
(

max
S,|S|=i

{V S − pi} ≥ max
j 6=i,|S′|=j

{V S′ − pj,0}
)

= P
(
V (i)− pi ≥max

j 6=i
{V (j)− pj,0}

)
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= P
(
V (i)− pi ≥max

j 6=i
{V (j)− pj,0}|Eσ∗

)
= P

(
Vσ∗(i)− pσ∗(i) ≥max

j 6=i
{Vσ∗(j)− pσ∗(j),0}|Eσ∗

)
= qσ∗(i)|σ∗.

The first equality follows from the definition of OPQ strategies and qi. The second equality

follows from noting that a customer only needs to consider the best opaque product of

each possible size i = 2, . . . ,N and the best item. The best opaque product of size i has

a valuation of the minimum of the top i valuations, which is the i’th order statistic. The

third equality follows from the fact that the valuations are exchangeable, and thus an event

on the order statistics is independent of Eσ for all σ ∈Σ. The fourth equality follows from

our pricing rule and the definition of σ∗. The last equality follows from the definition of

qi|σ∗. Combining our findings yields

ROPQ ≥ROPQ(p1, . . . , pN) =
N∑
i=1

piqi =
N∑
i=1

pσ∗(i)qσ∗(i)|σ∗ =Rev(p1, . . . , pN |σ∗)≥RDP . �

Case (ii): Fix a distribution F supported on two points {a, b} where a< b. Note for such

distributions, the optimal discriminatory pricing uses prices ~p = (a,a, . . . , a), (b, b, . . . , b)

or a mixed pricing where exactly one price (since F is exchangeable it doesn’t matter

which price) is low (a, b, b, . . . , b). If either (a,a, . . . , a) or (b, b, . . . , b) are the the optimal

discriminatory pricing given F , then RSP = RDP and the claim follows automatically.

Suppose RDP >RSP , then the optimal pricing is the mixed strategy and under a mixed

pricing, a discriminatory selling strategy always sells an item. Further we will restrict

ourselves to opaque pricings where pN = a, and thus always sell the item. Since the item

is always sold in both strategies, we may normalize the support of F to {1,1 + δ} without

changing the ratio RDP
ROPQ

. Now let U be a random variable representing the number of

valuations that are equal to 1 + δ. When U = 0, DP earns revenue of 1. When U = i≥ 1,

DP earns revenue of 1 + δ with probability
(N−1

i )
(Ni )

= N−i
N

and 1 otherwise. (The customer

buys the cheap item when they value it at 1 + δ.) Then for i≥ 1,

E[RDP |U = i] = 1 +
N − i
N

δ. (1)

Consider the following opaque pricing where for i ∈ [N ] we let pi = 1 + N−i
N
δ. When

U = 0, the customer buys the opaque product of size N at price 1, paying the same in
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the corresponding case in DP. When U = i ≥ 1, we claim that regardless of whether the

customer is pessimistic or risk-neutral, they will purchase an opaque product of size i (or

item if i= 1) earning revenue 1+ N−i
N
δ, which is the same revenue in the corresponding case

in DP and therefore would complete the proof. First suppose the customer is pessimistic,

then when U = i the customer values the size i product as 1 + δ and garners utility i
N
δ.

For j < i, the customer values the opaque product the same but has to pay a higher price,

while for j > i the customer values the opaque product at 1 and does not buy. Thus a

pessimistic customer yields revenue 1 + N−i
N
δ when U = i.

When the customer is risk-neutral and U = i, they again value the size i product as 1+δ

and garners utility i
N
δ for purchasing it. Products of size j < i have the same valuation,

but at a higher price, and thus offer less utility. For products of size j > i, the utility of

the size j opaque product is

i(1 + δ) + (j− i) · 1
j

− (1 +
N − j
N

δ) =

(
i

j
− N − j

N

)
δ

which is strictly less than i
N
δ. Finally, the above expression also shows that the utilities of

the opaque products of size i and N are the same, in which case the customer buys i (since

we have assumed w.l.o.g. that ties are broken in favor of the more expensive option). Thus

both pessimistic and risk-neutral customers have the same purchase behavior under this

opaque pricing, and yield the same expected revenue as RDP . �

In the proof of Theorem 1(i), we essentially view opaque selling with pessimistic cus-

tomers as discriminatory pricing where the ordering of the item valuations is known a priori

to the seller. That is, the valuations for the best item and opaque products take on exactly

the valuations of the original items - only the assignment of valuations to items/products

differs between the two strategies. It is then tempting to assume that OPQ is trivially more

profitable than DP, where the ordering of the item valuations is not known to the seller

and hence “less information” is available. Unfortunately this line of argument would just

as easily extend to other settings where our result does not hold, specifically settings where

valuations are not exchangeable (see Example 2 for counterexample). The extra informa-

tion offered by OPQ comes with an additional constraint: w.l.o.g. the highest valued item

is sold at the highest price, the second highest valued item is sold at the second highest

price, and so on, which need not be optimal.
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3.3. Benchmarking against Single Pricing

In this section, we seek to quantify the potential gains that opaque selling offers over

a simple single pricing strategy. This question has also been studied in the context of

discriminatory pricing. For example, when valuations are drawn i.i.d., Chawla et al. (2007)

shows that discriminatory pricing can earn at most 2− 1
N

more than single price strategies,

and Dutting and Klimm (2016) shows that this bound is tight. Interestingly, in the same

setting of i.i.d. valuations, opaque selling can also earn up to a constant factor more than

single pricing. In Theorem 2, we describe this upper bound as a function of α and N . A

direct consequence of this theorem is that when valuations are i.i.d., OPQ and DP are

always within a constant factor of each other. We defer the proof in Appendix I.2.

Theorem 2 (Revenue Upper Bound when Valuations are I.I.D.). Suppose

customers are α-mixed and their item valuations are i.i.d. Then,

ROPQ ≤
(

3 + (1−α)

(
1− 2

N

))
RSP .

In the more general case of exchangeable distributions, no results comparing DP to SP

are available to the best of our knowledge. In Theorem 3, we show that DP earns at most

1 + log(N) more than SP, while OPQ can earn up to and at most N times more than SP.

This implies that OPQ can earn up to O
(

N
log(N)

)
more revenue than DP, which we also

show is indeed possible in Theorem 3 and Example 4. We defer the proof to Appendix I.5

Theorem 3 (Revenue Upper Bound when Distribution is Exchangeable).

Suppose customers are α-mixed and draw their valuations from an exchangeable distri-

bution. Then, (i) RDP ≤ (1 + log(N))RSP , (ii) ROPQ ≤ NRSP , and (iii) there exists a

distribution F such that ROPQ ≥ α
2

N
1+log(N)

RDP .

4. The Power of One Opaque Product

In this section, we study the revenue gained by using a strategy with a single opaque

product (1OPQ), where the seller offers all N items at a single price alongside a single

opaque product corresponding to the set [N ]. 1OPQ represents the easiest use-case for

opaque selling, simply offering one opaque option made up of all N items. Fig. 1 shows an

example of 1OPQ for staplers on Amazon.com.

We note that since the 1OPQ strategy only offers two prices, a comparison to discrimi-

natory pricing which offers N prices becomes significantly more challenging. Nevertheless,
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we show in Section 4.1 that 1OPQ guarantees 71.9% of the revenue of DP in the special

case of two-point distributions. In comparison to single pricing, we show that 1OPQ can

earn at most a factor of
(
2− (1−α) 1

N

)
more than SP in Section 4.2. When N = 2, our

upper bounds are tight and the revenue increase can be larger than that of DP.

4.1. Benchmarking against Discriminatory Pricing

In Theorem 4 we show that 1OPQ guarantees at least 71.9% of the revenue that DP pro-

vides when the distribution is exchangeable and valuations are supported on two points

(low or high). As previously mentioned, such distributions are a natural and well-studied

model of customers with binary preferences, and may be used to approximate bimodal dis-

tributions. Further, as seen in Example 5 and Chawla et al. (2007), two point distributions

represent natural best cases for price discrimination for both 1OPQ and DP strategies. We

emphasize that Theorem 4 is a strict improvement on the best approximation possible by

RSP , which is 0.50RDP in this setting. Specifically, Chawla et al. (2007) give a two point

distribution such that when scaling the number of items N , limN→∞
RSP
RDP

= .5.

Theorem 4 (When 1OPQ Approximates DP). Suppose customers are α-mixed

and draw their valuations from an exchangeable distribution supported on two values, then

R1OPQ ≥ 0.719RDP .

Our proof follows from observing that when the probability of customers having high

valuations is large, a single pricing strategy is a good approximation. Otherwise, if the

probability of customers having high valuations is small, we show that augmenting single

price strategies with a single opaque product is a good approximation of the optimal

discriminatory pricing. We defer the complete proof to Appendix I.6.

4.2. Benchmarking against Single Pricing

In this section, we show that the addition of a single opaque product over the set [N ]

can increase the revenue by at most
(
2− (1−α) 1

N

)
. Although our bound holds under all

exchangeable distributions, Examples 5 and 6 shows that our analysis is tight in the special

cases of α= 0 and α= 1, even when customers are restricted to have i.i.d. valuations. We

defer the proof to Appendix I.7.
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Theorem 5 (Revenue Upper Bounds for 1OPQ). Suppose customers are α-

mixed and draw their valuations from any distribution. Then,

R1OPQ ≤
(

2− (1−α)
1

N

)
RSP

Further, when α = 0 or α = 1 there exists an i.i.d valuation distribution such that the

bounds are tight.

Theorem 5 fully describes the possible revenue increase a seller could hope to garner using

a single opaque product. It is of interest to note that when N = 2 and α= 1, Theorem 5

implies the existence of a valuation distribution such that R1OPQ = 2RSP . However by

Theorem 3(i), RDP ≤ (1 + log(2))RSP for any distribution. Together these results show

that 1OPQ can sometimes achieve higher revenue lifts than DP.

5. Numerical Experiments

In this section we conduct numerical experiments to explore the relationships between

RSP ,R1OPQ,RDP , and ROPQ for various valuation distributions and under various market

assumptions. To perform the experiments, we must solve for the optimal prices for any of

these strategies. That is given the distribution F , and α, we must solve for the price vector

that maximizes revenue. However, in general solving for the optimal prices in multi-item

settings is quite difficult. Even in the special case when the valuations are i.i.d., solving

for the optimal discriminatory pricing strategy is NP-Hard (Chen et al. (2018)).

Although not the focus of this work, as a prerequisite step in Appendix D we address

this issue by developing a simple enumerative algorithm which is computationally efficient

in the special case when the support of the valuations is discrete and the number of items

is not large. Note that a simple brute force search over the support is not sufficient, as opti-

mal prices do not necessarily lie on the support (Chawla et al. (2007), Chen et al. (2015,

2018)). Given any distribution F , our approach then will be to first discretize the distri-

bution and then run Algorithm 1. We emphasize that carefully discretizing the support

and then solving still yields near-optimal solutions for the true underlying distribution.

Indeed, Hartline and Koltun (2005) show that when valuations are supported on [l, h],

restricting the price optimization to log1+ε

(
h
l

)
discrete price points results in prices that

garner revenue within a factor of 1 + ε of the optimal revenue. Finally, when the number

of items is large, we note that one can employ a standard MIP approach along the lines
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of (Hanson and Martin (1990), see Appendix E for a complete formulation of the MIP)

however such an approach runs in exponential time in both m and n in the worst case.

In what follows we conduct our numerical experiments. In Section 5.1, we introduce the

valuation distributions we study in this section and perform computations to establish

baseline comparisons between RSP ,R1OPQ,RDP , and ROPQ. In Section 5.2 we show how

opaque selling strategies perform when the model is misspecified. Specifically, we first con-

sider the case when the percentage of pessimistic customers in the market (α) is unknown,

and demonstrate that α can be effectively estimated from sales data such that the resulting

opaque selling model garners almost all of the available revenue. Then we consider a case

when customers are neither pessimistic nor risk-neutral, but something in between, and

again show fitting our original model and optimizing results in an opaque selling strategy

that extracts nearly all of the revenue. Finally, in Appendix G, we conduct two additional

experiments to study the efficacy of opaque selling as the variance of the valuation distri-

bution changes and when valuations are sampled from multiple exchangeable distributions.

5.1. Baseline Computational Results

In this section we set up a baseline for numerical experiments on three typical valuation

distributions which bear out the relationships between RSP ,R1OPQ,RDP , and ROPQ that

we have studied in the previous sections. We shall assume item valuations are drawn i.i.d.

from the following distributions: (i) a triangular distribution supported on [1,7] with mode

3, (ii) a normal distribution with mean 3 and standard deviation 2 truncated on [1,7], and

(iii) a Bernoulli distribution supported on {1,7} with probability of a 7 being 1/9. These

three valuations distributions are natural and widely studied, while also varied enough

to showcase the differences between the pricing strategies. In order to apply Theorem 7,

we discretize these distributions by rounding valuations to their nearest integer value. We

compute the revenue of SP, 1OPQ, DP, and OPQ for every value of α from 0 to 1 in

increments of 0.05. Note that the revenue of SP and DP do not change with α, which

is a parameter for the mixture of pessimistic and risk-neutral customers with respect to

opaque products. Fig. 6 displays our results when N = 2 (in which case OPQ is equivalent

to 1OPQ) and Fig. 7 displays our results when N = 3.

Each of the three distributions we study result in fundamentally different behaviors. In

Fig. 6(a) we note that RDP >RSP , and further when α < 0.3, RDP >ROPQ. However as

α increases towards one, the relationship between RDP and ROPQ reverses. When α is
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Figure 6 Revenue in simulated markets when N = 2.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. Illustrates the relationship between RSP (dashed line),RDP (dotted line), and ROPQ (solid line) as the propor-

tion of pessimistic customers increases.

close to 1, ROPQ significantly outperforms RDP , garnering up to approximately 5% more

revenue. In Fig. 6(b) we note that RSP =RDP , meaning that discriminatory pricing alone

does not add value over a single price. However, OPQ can earn strictly more revenue than

either strategy when α> 0.5. Finally in Fig. 6(c), ROPQ ≥RDP for any value of α, which

is known directly from Theorem 1(ii). The gap is positive and increasing when α > 0.5,

which is implied by Corollary 1. Interestingly, for all three distributions ROPQ is a non-

decreasing function in α. This is counter-intuitive: as the number of pessimistic customers

increase, more customers have lower values for the opaque products but the overall revenue

from OPQ increases. This suggests that the revenue non-monotonicity noted in Section 3.2

is quite pervasive. We believe that this occurs since pessimistic behavior results in the

customers being much more separated naturally than risk-neutral customers. This helps

ensure that the opaque products are not cannibalizing the full priced traditional products

too much. One practical insight from this is that retailers should not reveal allocation

probabilities to consumers, as knowledge of such allocation probabilities would more likely

result in more risk-neutral customers and thus less revenue.

In Fig. 7(a), we see that that lifting the problem from N = 2 to N = 3 collapses the

revenue gap between RSP and RDP , but does not diminish the impact of opaque products.

Further we note that a single opaque product performs just as well as the general opaque

strategy does. In Fig. 7(b), we observe that when α > 0.8, 1OPQ and OPQ can outearn

DP. As α approaches 1, eventually there is a revenue gap between 1OPQ and OPQ. Finally

in Fig. 7(c), we see that when α < 0.5, DP and OPQ are equivalent and outperform
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Figure 7 Revenue in simulated markets when N = 3.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. The relationship between RSP ,RDP ,R1OPQ and ROPQ as the proportion of pessimistic customers increases.

1OPQ. When α > 0.5, 1OPQ and OPQ are equivalent and outperform DP. These these

experiments demonstrate a wide range of behavior, but show, generally, that OPQ and

1OPQ strategies tend to outperform DP almost always, and to improve as α increases.

In Appendix G, we vary the variance of the distributions and find that a low to medium

amount of variance results in the most benefit for DP and OPQ, otherwise SP becomes

optimal as variance becomes large.

5.2. Robustness of the Model

In this subsection we conduct numerical experiments on the three valuation distributions

described above to test the performance of opaque selling when the model is misspecified.

When α is misspecified. In Figs. 6 and 7 we compared the revenues of the opaque

and discriminatory pricing strategies when the model is well-specified, i.e. the underlying

valuation distribution is known and the mixture of pessimistic vs. risk-neutral customers,

α, is explicitly known. In the next set of computations we compare the revenue of opaque

strategies when α is misspecified.

Specifically, in Fig. 8 we plot the revenue of two opaque selling strategies trained under

the assumption of α= 0, and α= 1, respectively, on markets where the true proportion of

pessimistic customers α varies between zero and one. We find that prices trained under

the assumption of risk-neutrality (OPQ, α = 0) have stable performance regardless of α

reflecting that fact that risk-neutral valuations are more tightly concentrated and thus lead

to prices which are less finely tuned to exploiting differences in the valuations across the

items. On the other hand, prices for opaque selling strategies trained under the pessimistic

assumption (OPQ, α= 1), are calibrated to capture differences in the valuations between
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Figure 8 Revenue in simulated markets when N = 3 and α is misspecified.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. Illustrates the relationship between the revenue of an opaque selling strategy fitted under the assumption that

α= 0 (dashed line) and α= 1 (dotted line), as well as a correctly fitted opaque selling strategy (dashed-dotted line)

as the true proportion of pessimistic customers increases.

items and only perform well when correctly specified. We observe that the performance of

such strategies smoothly degrades as α tends to 0. Most importantly, we see that the best

of the two strategies α= 0 or α= 1, nearly approximates the optimal opaque strategy. This

suggests that α can be productively thought of as a binary parameter, and that effectively

only two strategies need to be tested.

When α must be estimated from data. Given the sensitivity of opaque selling to the

proportion of pessimistic customers in the market, a natural question then is whether α can

be easily estimated from sample data. We assume the underlying valuation distribution F

is known and focus on estimating α from purchase data. This situation arises for a seller

who has been engaged in discriminatory pricing for a long time and thus has knowledge of

F and the underlying choice model already. Knowing F , the seller switching to an opaque

strategy and simply needs to estimate α.

In Fig. 9, we compare the revenues of opaque selling strategies when α is estimated

from a fixed number of sample purchase histories given a fixed price ~p. To estimate α we

use a maximum likelihood estimate under a fixed test price, for details of the estimation

procedure see Appendix F. As α ranges from 0 to 1, we compute opaque selling strategies

by estimating α using a small number of randomly generated sample purchases (10), a

medium number of sample purchases (100), and a large number (1000), and then we solve

for the optimal opaque prices under the estimated α and plot its performance. We repeat

the estimation of α and subsequent price computation 100 times for each true value of α.

For plots of descriptions of the estimated α’s themselves, see Appendix F.
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Figure 9 Revenue in simulated markets when N = 3 and α is estimated.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. Illustrates the relationship between ROPQ (dotted line) when the true value must be estimated from data. The

dashed lines represent the average revenue obtained under an opaque selling strategy for α was estimated from ten

samples (10 Samples), one hundred samples (100 Samples), and one thousand samples (1000 Samples).

We find that using only ten samples is enough to recover most of the performance of

opaque selling in the cases that the true opaque selling revenue outperforms SP, but given

the small number of samples, the opaque strategy trained on only ten samples may in

fact lose revenue by overestimating the portion of risk-averse customers in the market.

Increasing the number of samples to the still modest number of 100 eliminates most of

this instability and recovers almost all the revenue of the optimal OPQ in each of the

three markets. When the number of observed purchases histories is 1000, the performance

of OPQ with an estimated α is nearly identical to the performance of the opaque selling

strategy that knows the true value of α.

When customers are neither pessimistic or risk-neutral. Thus far, we assume cus-

tomers value the opaque product either in a pessimistic or a risk-neutral fashion. One

natural extension beyond our model is to imagine customers value the opaque product not

merely as pessimistic or risk-neutral, but as some convex combination of those valuations

representing the spectrum of ways individuals respond to risk. In the next set of experi-

ments we consider the efficacy of decisions made under our model when in fact customers

are neither pessimistic nor risk-neutral. Specifically, we call a market γ-homogeneous when

all customers value an opaque product over the set of items S as a γ-convex combination

of the minimum valued item and the average valuation for the items, i.e., they value an

opaque product over items S ⊂ [N ] as

V S(γ) = γmin
i∈S
{Vi}+ (1− γ)

∑
i∈S Vi

|S|
.
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Note that a 1-mixed (0-mixed) and 1-homogeneous (0-homogeneous) market are equivalent.

To assess the efficacy of our model on γ-homogeneous markets we conduct the following

experiment. As before, we assume knowledge of the underlying valuation distributions but

not the proportion of pessimistic customers. Then we estimate α from sample purchases

over the γ-homogeneous market using the same test price and procedure as above and in

Appendix F, using either 100 or 1000 samples. Once α is estimated, we optimize our OPQ

strategy with the misspecified α market to compute a price ~p, and finally measure the

performance of that price on the true γ-homogeneous market.

Figure 10 Revenue in γ-homogeneous markets.

(a) Triangular dist. (b) Normal dist. (c) Bernoulli dist.

Note. Illustrate the relationship between ROPQ (OPQ) trained with full knowledge that the market is γ

mixed, and three opaque strategies generated by fitting an α and computing a price under the assumption

that the market is α mixed. The dashed lines represent the average revenue obtained on the γ mixed market,

under an opaque selling strategy which estimated α from one hundred samples and one thousand samples.

In Fig. 10 we plot the results of our experiment and make the following findings. First,

opaque selling (trained with full knowledge of customer preferences) continues to achieve

significant gains over single price and discriminatory pricing strategies when the market is

γ-homogeneous. Second fitting an opaque selling strategy according to the model studied

in this paper, even if customers are γ-homogeneous and value the opaque goods in neither

a pessimistic nor risk-neutral fashion, still achieves almost all of the gain of an optimal

opaque strategy that knows the true model (c.f. Fig. 10).

6. Conclusion

In this paper, we studied opaque selling strategies in the context of selling horizontally

differentiated items to unit-demand customers. We considered mixtures of two practi-

cal models of customer behavior corresponding to pessimistic and risk-neutral customers,

motivated by the customer’s lack of knowledge about how opaque products are allocated
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by the seller. When the valuation distribution is exchangeable and either customers are

pessimistic or have binary preferences, we showed that opaque selling dominates discrim-

inatory pricing. We also explicitly quantified the best possible revenue lift from using

opaque products, which can be significantly higher than discriminatory pricing. Finally,

we considered the practical case where only one opaque product is offered, and offered

theoretical and numerical evidence of the strength of this simplified strategy.

We believe our results provide strong motivation for the use of opaque products as a

vehicle for price discrimination, especially in online sales channels. Since our opaque model

imposes a single price for opaque products of the same size, it is impartial to customers

with particular preferences. It is also particularly advantageous in situations where dis-

criminatory pricing could be effective, but disallowed due to business constraints and/or

poor customer perception. It would interesting for future research to consider the impact

of competition and finite inventory constraints on opaque selling, as well as behavioral

studies for how consumers value opaque products in various markets.
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Appendix. E-companion.

A. Theoretical Motivation for the Risk-Neutral Assumption

In this work we consider two types of customers, pessimistic ones and risk-neutral ones. In the risk-neutral

case, the customer’s assumption is equivalent to assuming that upon purchase of an opaque product of size

i, each item in the product is allocated by the seller with probability 1
i
. Such an assumption is simple and

natural when the seller does not announce the allocation probabilities. However when forming beliefs about

the seller’s allocation, it is worthwhile to consider the situation from the seller’s point of view. If allocation

probabilities were announced, what would be the revenue maximizing way for the seller to allocate items?

When goods are horizontally differentiated is it revenue maximizing of the seller to always allocate goods

uniformly at random? In this section we consider this question and show that, in general, allocating goods

uniformly at random from the opaque product is not revenue-optimal. However, in the special case when

valuations are supported on two points, we show that uniformly random allocations are optimal. Along the

way we highlight an interesting non-linear relationship between the allocation proportions and the revenue

of an opaque strategy when valuations are supported on two points (c.f. Fig. 11).

First, we show that uniformly random allocations is not always revenue-optimal. To this end, suppose

N = 2 and consider an allocation rule where the opaque product always yields item 1 with probability β > .5

and item 2 with probability 1−β. We denote the revenue of an opaque strategy which allocates in this way

by ROPQ (~p,β). In Fay and Xie (2008), they show that β = 1/2 is revenue optimal when the valuations follow

a generalized Hotelling model, i.e., 1/2 = arg maxβ max~pROPQ(~p,β). Unfortunately, such a result does not

hold for all exchangeable valuation distributions. Even when N = 2 and valuations are i.i.d., the following

example implies there are cases when β = 1/2 is suboptimal.

Example 3 (RDP (~p) =ROPQ(~p,1) when N = 2.). Let N = 2 and F be an exchangeable valuation distri-

bution. Suppose (p1, p2) are the prices used by an optimal DP strategy, and p1 ≥ p2. When β = 1 we claim the

optimal opaque selling strategy uses prices (p1, p2) = (p1, p2), which implies RDP (p1, p2) =ROPQ(p1, p2,1).

To see this, note that when β = 1 OPQ can never sell item 1 at the traditional price p1 since V1 − p1 <

βV1 + (1− β)V2 − p2 = V1 − p2. Thus the opaque strategy only allocates item 1 via the opaque option, and

only when (V1−p2)≥ (V2−p1)+. Similarly, item 2 is never allocated via the opaque option, and is sold only

when V2− p1 ≥ (V1− p2)+. It then follows that the opaque selling strategy with β = 1 induces the same sale

probabilities as the discriminatory pricing with the same prices, and thus RDP (p1, p2) =ROPQ(p1, p2, β = 1).

Combined with Example 1 which furnishes an example where RDP >ROPQ when α= 0, the equivalence

between opaque selling to risk-neutral customers when β = 1 and discriminatory pricing implies that β = 1/2

is not revenue-optimal for all exchangeable distributions. �

One consequence of Example 3 is that β = 1/2 can only be optimal if in situations where OPQ selling

is guaranteed to dominate the revenue of discriminatory pricing. As shown previously, this is not always

true. However in Theorem 1(ii) we proved that when β = 1/2 and valuations are drawn from a two-point

distribution, that OPQ dominates DP. In the remainder of this section we explore optimal allocation rules

for opaque selling when valuations are supported on two points.
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Figure 11 Revenue when N = 2, two point distributions, risk-neutral customers as β varies.

Note. Illustrates the relationship between β (the probability that item 1 is allocated by the opaque product)

and the revenue of the optimal pricing strategies: RSP ,RDP , and ROPQ(β), as β varies between 0 and 1.

In Fig. 11, we plot the revenues of SP, DP, and OPQ when valuations are supported on two points and

as β changes. Specifically, we suppose valuations are drawn i.i.d. according to the Bernoulli distribution

described in Section 5.1. As one can see, the revenue is highly non-concave in β, but does peak when β = 0.5

and additionally when β = 0 or 1. This figure highlights another counter-intuitive aspect of multi-product

pricing, and further motivates the need for simple assumptions about how customers behave. In Theorem 6

below we show that although there may be other optimal allocation rules, when valuations are supported on

two points, β = 1/2 is always optimal.

Theorem 6 (When Equal Allocation is Optimal). Suppose customers are risk-neutral and draw

their valuations from an exchangeable distribution supported on two values. Then for any β ∈ (.5,1],

ROPQ(·,1/2)≥ROPQ(·, β).

Proof. Fix β > 1/2. Following the proof of Theorem 1(ii) let the support of V be normalized to 1 and 1+δ,

let U be the random variable counting the number of valuations that are equal to 1+δ, and let qi = P(U = i).

Since N = 2, there are four possible valuations for the opaque product: S = {1,1+(1−β)δ,1+βδ,1+ δ} and

further by Lemma 10, we know p2 ∈ S, and p1 = s1− (s2− p2)+ for some s1, s2 ∈ S. We will now enumerate

the possible prices for the opaque strategy and check them individually, omitting prices such that p1 = p2

which can easily be seen to be less than or equal to RSP .

Suppose p2 = 1. If the opaque strategy uses prices (p1, p2) = (1 + δ,1) one can easily check these price earn

less than the revenue of an optimal discriminatory pricing and thus less than ROPQ(·,1/2) by Theorem 1(ii).

If (p1, p2)∈ {(1 +βδ,1), (1 + (1−β)δ,1)}, then

ROPQ((1 +βδ,1), β) = q0 + (1 +βδ/2)q1 + q2,

ROPQ((1 + (1−β)δ,1), β) = q0 + (1 + (1−β)δ)q1 + q2,

which are both less than q0 + (1 + δ/2)q1 + q2 = ROPQ((1 + δ/2,1),1/2). Otherwise, if p2 >

1 then ROPQ((p1, p2), β) ≤ (q1 + q2)p1 = RSP (p1). Thus, we have checked all cases and conclude

arg maxβROPQ(·, β) = 1/2. �



Elmachtoub and Hamilton: The Power of Opaque Products in Pricing 35

B. A Primer on Discriminatory Pricing

In this work, we consider pricing strategies for customers with valuations drawn from an exchangeable

distribution. Due to the symmetry of exchangeable valuation distributions, it is natural to assume that the

optimal pricing strategy would be to offer an identical price for each item. Surprisingly, this is not the case;

discriminatory pricing where some items are priced higher than others can yield significantly more revenue.

(Note any permutation of the optimal prices is also optimal.) Consider the following simple example where

N = 2, and customers draws their item valuations from an i.i.d. distributions V1 and V2:

V1, V2 ∼
{

2 : w.p. 1/3
1 : w.p. 2/3

The optimal single price strategy offers both items at price 2, and earns revenue of RSP = 2 ·

P (max{V1, V2} ≥ 2) = 10
9

. Now consider a discriminatory pricing where item 1 is sold at a price of 1 and item

2 is sold at a price of 2, then RDP (1,2) = 1 · (P (V1 = 1, V2 = 1) +P (V1 = 2, V2 = 1)) +P (V1 = 2, V2 = 2)) + 2 ·

P (V1 = 1, V2 = 2) = 11
9

(note that the higher price item is purchased in the event of a tie w.l.o.g.). This extra

1
9

is from two opposing forces at play. The low price of 1 allows the discriminatory strategy to extract revenue

from customers with low valuations for both items, an additional expected revenue of 4
9
. The downside of

the low price is that it cannibalizes sales from the high priced item when V1 = 2, resulting in a loss of 1
3
.

Overall, the upside outweighs the downside and increased revenue can be had by offering different prices for

these i.i.d. valued items.

Given that the revenue from discriminatory pricing can exceed single pricing, a natural question is then

how much more can revenue can discriminatory pricing earn. In i.i.d. settings, the question has been fully

resolved.

Lemma 1 (Dutting and Klimm (2016) Theorems 3 and 4). Let N be the number of items. When

valuations are drawn i.i.d.,

RDP ≤
(

2− 1

N

)
RSP .

Further, this bound is tight for each N .

In addition to being theoretically interesting, discriminatory pricing strategies are common in online mar-

ketplaces, even for basic retail goods. As an example in Fig. 12, two nearly identical shirts are offered for

different prices on Amazon.com.

C. An Extension of Exchangeability that Encompasses Salop’s Circle Model

In this section, we describe Salop’s circle model, a core model for horizontally differentiated items, and

discuss how Theorem 1(i) can be extended to this case. In Salop’s circle model, each item is represented

as a point on a circle. The N points are equidistant on the circumference of the circle, and denoted by

y1, . . . , yN . Each customer corresponds to a random point X on the circumference of the circle, distributed

uniformly at random. The customer then values each item i according to Vi = a− b‖X−yi‖, where the norm

corresponds to the distance traveled on the circle and a, b are tunable parameters. Note that the underlying

joint distribution for item valuations arising from Salop’s circle is not independent, as closeness to one item

on the circle necessarily implies the customer is farther from (lower valuations for) the other items.
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Figure 12 Discriminatory Pricing on Amazon.com.

(a) A dark blue men’s shirt listed for $17.88. (b) A light blue men’s shirt listed for $14.99.

When N = 2, Salop’s circle reduces to the Hotelling model, which is well-known to be exchangeable. We

now show that when N = 3, Salop’s circle still gives rises to an exchangeable valuation distribution. First,

observe from Fig. 13 that the six possible valuation orders of the 3 items are equally likely. For example, if

a customer is in region c, they prefer item 3, then 1, then item 2. If a customer is in region d, they prefer

item 3, then item 2, then item 1. All 6 orderings are possible when N = 3. Since X is drawn uniformly at

random, then exchangeability follows immediately.

Figure 13 Salop’s Circle when N=3.

Note. Salop’s circle for N=3 products, divided into six equal regions.

Unfortunately this argument for exchangeability does not extend beyond N = 3. One easy way to see this is

to note that, when N = 4, the customers are partitioned into 8 regions corresponding to 8 possible valuation

orderings (analogous to Figure 13). However, there are 24 possible valuation orderings when N = 4, and

thus it cannot be the case that every permutation yields identical marginal distributions. More generally,

Salop’s circle has 2N possible orderings arising from 2N customer regions, while exchangeability requires all

N ! valuation orderings be equally likely.

To capture Salop’s circle, we relax our definition of exchangeability from requiring every permutation to

yield identical joint distributions to only a subset of permutations, S, to have identical joint distributions.
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Definition 2. Let Σ be the set of all permutations on [N ]. Let sort(·) be the function that sorts a vector

in descending order. We call the random valuation vector V = (V1, . . . , VN) S-exchangeable if S is a non-empty

subset of Σ such that for all σ ∈ S, σ(sort(V )) has the same joint distribution as V .

In essence, S-exchangeability limits the possible orderings of the valuations for items to the set S and enforces

that inside S, each of those orderings is equally likely. Note that when S = Σ, then S-exchangeability is

equivalent to our earlier notion of exchangeability. It is now easy to see that Salop’s circle model is S-

exchangeable, where S describes the orderings arising from the 2N regions. The joint distributions for each

of these orderings are all the same since X is uniformly distributed on the circle.

Finally, we note that when customers are pessimistic and their valuations are S-exchangeable, opaque

selling always dominates the revenue from discriminatory pricing. This implies Corollary 2, which is an

extension of Theorem 1(i).

Corollary 2. Assume α= 1 and customers valuations are S-exchangeable, then

ROPQ ≥RDP .

Proof. The proof is exactly the same as Theorem 1(i) where Σ, the set of all permutations, is replaced

by S instead. �

D. An Enumerative Algorithm for Finding Optimal Pricings

In this section, we describe an algorithm for finding the optimal pricing in the special case when the support

of the distribution is discrete. (As mentioned previously, we assume that we have approximated the original

distribution by a discrete distribution.) When the number of items is small, this algorithm is relatively

efficient. Specifically, we show that if N is assumed to be constant, then the optimal prices for any strategy

(SP, DP, OPQ, or 1OPQ) can be found in time that is polynomial in the size of the support of the valuation

distribution.

We let m denote the number of points (valuation vectors) in the support of F . Each support point j

corresponds to a customer type with a valuation vector ~vj = (vj,1, vj,2, . . . , vj,N). When referring to DP, vj,i

denotes type j’s valuation for item i. When referring to OPQ, vj,i denotes type j’s valuation for the opaque

product of size i. Note that opaque valuation vectors can easily be generated given a discretized distribution

by computing the opaque valuations for pessimistic and risk-neutral customers directly. The type vector

can also be made to correspond to the type vector for SP by replacing each vector in the DP case with

(maxi vj,i), and 1OPQ by replacing each vector in the OPQ case with (vj,1, vj,N). In the case of 1OPQ, this

reduction ensures that regardless of how many items are being sold, since only two options are being priced

the effective number of items is two.

In Theorem 7 we show that the optimal prices can be found in time O(mN) (O(m2) for 1OPQ). The idea

of Algorithm 1 is to identify a set of (m+ 1)N candidate prices which is guaranteed to contain the optimal

price. The algorithm then enumerates over the set of candidate prices and returns the price that yields the

highest revenue. We summarize the result in the following theorem.
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Theorem 7 (Algorithm for Computing Optimal Prices). Let F be an exchangeable distribution

over m customer types. Then both the optimal opaque pricing and discriminatory pricing can be computed

in O(mN) time by Algorithm 1.

Proof. The proof will depend on the following structural lemma which asserts that the prices can be

found by carefully combing through the support of the valuation distribution. Suppose ~p is the optimal

price vector. By Lemma 10 in Appendix J, and for every i ∈ [N ], either there exists a type j such that

pi = vj,i−maxk>i{(vj,k− pk)+}, or no customer type buys item i. Using this observation, we can inductively

enumerate the prices starting from the lowest price and working upwards.

Algorithm 1: Enumerative Algorithm

Main Enumerate Price Tree(F):

Input : Distribution F , supported on m types vi ∈RN .

Initialize: PN =∪mj=1vj,N

for ( i=N − 1 : 1 ) {

for ( p̃∈ P i+1 ) {
P i = P i ∪mj=1 vj,i−maxk>i (vj,k− p̃k)+

}

}

return arg maxp̃∈P 1RF
DP (~p)

We focus on optimal pricing for DP, and the same analysis holds for OPQ. Consider the following algorithm

that proceeds by guessing the prices in order from low to high. Fix some ordering on the prices p1 ≥

p2 ≥ . . . ≥ pN , by exchangeability this is w.l.o.g. By Lemma 10, it must be the case that the lowest price

pN ∈ {vj,N}mj=1 or else that item N is not purchased by any customer. If that item is supposed to not be

bought, we can set the price to ∞ effectively discarding the item. Thus there are m+ 1 choices for pN , one

for each customer type and the ∞ no-purchase option. Under each of these choices, compute {ṽj,N−1}mj=1

where ṽj,i = vj,i−maxk>i (vj,k− pk)+. Again, it must be the case that pN−1 ∈ {ṽj,N−1}mj=1 by Lemma 10 or

else it is not bought and we can set the price to∞. Proceeding in this way we create a tree of size of depth N

with m+ 1 branches, terminating in (m+ 1)N leaf nodes each corresponding to a potential optimal solution.

For each leaf node, one can compute the revenue from the candidate price in linear time. Thus, the overall

runtime is simply O(mN). �

E. An Integer Programming Formulation of the Optimal Pricing Problem

In Section D we described a simple recursive algorithm for computing optimal prices. In this section we

formulate the optimal pricing problem given sample valuations as a mixed integer linear program (MILP).

We emphasize that the worst case run-time of this MILP is Nm which can be exponentially worse than the
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enumerative scheme in the common case when m, the size of the type space, is large but N , the number of

items, is small. The details of this MILP are implicit in the work of Hanson and Martin (1990) who solve a

broader version of this problem.

The input for the MILP is a distribution over m customer types {vi}mi=1 ⊂RN≥0. We will use qi to be the

probability of a customer of type vi occurring. The decision variables for the MILP are:

1. pi,j , the price customer of type i would pay for item j under the pricing.

2. θi,j , boolean variables that equals 1 when a customer of type i buys item j, and 0 otherwise.

3. pi, the price of item i.

4. si,j , the utility (or surplus) a customer of type i obtains from from a purchase of item j.

The optimal pricing is a solution to the following formulation.

max
∑
i

qi
∑
j

pi,j

pi,j ≤ pj , pi,j ≥ pj −max
i,j
{vi,j}(1− θi,j) ∀(i, j)

si,j = vi,jθi,j − pi,j ∀(i, j)

si ≥ vi,j − pj , si =

N∑
j=1

si,j ∀i∈ [m]

m∑
i=1

θi,j ≤ 1 ∀j ∈ [N ]

pj , pi,j , si, si,j ,≥ 0, θi,j ∈ {0,1}

The objective function is the expected revenue earned by the pricing. The first set of constraints enforce that

the prices charged to a customer of type i for item j are less than the price for item j and are consistent

with θi,j , the Boolean expressing whether or not a customer purchases. The second set of constraints enforce

that the item a customer purchases maximizes their utility among the N items. The third set of constraints

enforces that each customer only purchases at most one item.

F. Fitting Models

In this work we consider markets that are mixtures of pessimistic and risk-neutral customers, and use α

to represent the proportion of pessimistic customers in the market. In this section we show how α can

be estimated via a maximum likelihood procedure. Let F be the distribution of valuations assumed to be

computed earlier and fully known to the seller, and suppose a seller experiments with opaque selling using

the vector of distinct prices ~p such that pi > pi+1 for each i. Under this pricing, the seller observes sales data

for m customers. Specifically, each arriving customers purchases either a traditional item (opaque product of

size 1), an opaque product of size 2, . . . ,N , or no product at all. Partition the customers into sets {Ei}Ni=0,

where Ei is the set of customers who purchased the opaque product of size i= 1,2, . . . ,N , and E0 are the

customers who did not purchase.

Since F and ~p are fixed, the expected purchase probabilities when α= 0 and α= 1 under ~p can be computed

either explicitly or by simulation. We will denote these vectors of purchase probabilities as ~q0 = (q01 , . . . , q
0
N)
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and ~q1 = (q11 , . . . , q
1
N), and more generally we will denote the vector of true purchase probabilities for a fixed

α by ~qα = α~q0 + (1−α)~q1.

Now the likelihood of observing {Ei}Ni=0 under a hypothesis for the proportion of pessimistic customers α̃

is simply
∏
i
(α̃q0i + (1− α̃)q1i )|Ei| and the log-likelihood is

L({Ei}, α̃) =
∑
i

|Ei| log
(
α̃q0i + (1− α̃)q1i

)
.

Thus the maximum likelihood estimate for the true mixture proportion α is α̂= arg maxα̃L({Ei}, α̃) is the

solution to a straightforward one dimensional concave maximization problem. To demonstrate the efficacy of

our estimation procedure, in Fig. 14 we plot how well this MLE procedure fits the true α given 10, 100, and

1000 customer samples, respectively, for the three test valuation distributions described in Section 5.1. For

each test distribution, a single test price vector is found via local search such that it induced non-zero purchase

probabilities for each of the opaque goods. Specifically, prices are adjusted down one at a time, starting with

the highest price for which the probability of purchase is zero, until all the products have nonzero probability

of purchase. For the triangular distributions, the test price found is ~p = (5.6094,4.399,3.8357), for normal

distributions the test price found is ~p= (5.6962,3.732,2.6008), and for Bernoulli distributions the test price

found is ~p= (7,6,1). For each α ∈ {.01, .02, . . . , .99, .1}, we perform the estimation procedure 100 times. We

will denote of the ith estimation when the true value was α by α̂i,α. For each estimated α̂i,α we plot a black

dot in Fig. 14. The mean estimation for α over all 100 experiments, 1
100

∑100
i=1 α̂i,α, is given by the central line

along with lines representing the estimate one sample standard deviation above the mean and one standard

deviation below the mean. We notice that in all cases, our estimation is centered around the true value and

the mean of all estimates closely tracks the true value of α regardless of the number of samples.

For triangular distributions using ten, one hundred, and one thousand samples, our MLE estimation

achieves an average estimation error, 1
100

∑
α∈{.01,.02,...,.99,.1}

1
100

∑100
i=1 |α− α̂α,i|, of 0.318, 0.150, and 0.051,

respectively, and results in average percent revenue loss (from using α̂ rather than α) of 0.58%, 0.1394%,

and 0.0123%. For normal distributions our MLE estimation achieves an average estimation error of 0.210,

0.073, and 0.024, respectively, and results in average percent revenue loss of 0.244%, 0.0435%, and 0.0052%.

Finally, for Bernoulli distributions our MLE estimation achieves an average estimation error of 0.231, 0.082,

and 0.027, respectively, and results in average percent revenue loss of 3.58%, 0.628%, and 0.052%. Thus we

conclude that our estimation is effective, even with a modest number of samples, in approximating the true

value of α, and very effective in inducing correct pricing decisions for opaque selling strategies.

G. Additional Experiments

In this section we conduct two numerical experiments to further understand the performance of opaque sell-

ing, one as the variance of the valuation distribution increases, and one when valuations are not simply i.i.d.

but drawn from a complicated market where some customers have strong preferences and other customers

are indifferent.

One natural conjecture for explaining the performance of discriminatory pricing strategies and thus, by

Theorem 1, the performance of opaque selling, is that the differentiation in prices captures variations in the
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Figure 14 Fitted α’s in simulated markets when N = 3.

(a) Triang. dist., 10 Samples. (b) Triang. dist., 100 Samples. (c) Triang. dist., 1000 Samples.

(d) Normal dist., 10 Samples. (e) Normal dist., 100 Samples. (f) Normal dist., 1000 Samples.

(g) Bernoulli dist., 10 Samples. (h) Bernoulli dist., 100 Samples. (i) Bernoulli dist., 1000 Samples.

Note. Plotted above are 5000 simulated estimations of α as α varies from 0 to 1 by .01, each represented

by a single black dot. We repeat the experiment three times for each valuation distribution using 10, 100,

and 1000 randomly generated sample purchases for each estimation, respectively. For each plot, the dashed

line is the average estimate of α, and the dotted lines represent one sample standard deviation above the

estimated α and below the estimated α, respectively.

customer’s valuations. Thus as the variance of the underlying valuations increase so too should the benefit

of price discrimination. In Fig. 15 we test this hypothesis by considering the revenue of SP, DP, and OPQ

for i.i.d. valued items as the variance of the valuation distribution increases. In the OPQ strategy, we let α

be .5 and note that OPQ selling revenues are higher for larger α and lower for smaller α. As expected, when

the variance is close to zero SP, DP, and OPQ all perform similarly. As the variance begins to increase, both

OPQ and DP begin to outperform SP by comparable amounts. However as the variance becomes quite large

we observe that the gaps between the revenues of the strategies vanish, all three strategies perform nearly



42 Elmachtoub and Hamilton: The Power of Opaque Products in Pricing

Figure 15 Revenue in simulated markets when N = 3 as the variance increases.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. The relationship between RSP (dashed line),RDP (dotted line), and ROPQ (solid line) as the variance increases.

identically, and the optimal opaque and discriminatory prices become uniform. This experiment suggests

that for highly variable distributions, it is more important to capture the highest valuation with a single

optimally chosen price than it is to try and capture intra-item variation in valuations with differentiated

prices due to the risk of cannibalization that can occur from offering a low price to a customer with high

valuations.

Figure 16 Revenue in mixture of exchangeable markets when N = 3.

(a) Triangular distribution. (b) Truncated normal distribution. (c) Bernoulli distribution.

Note. Illustrates the relationship between RSP (dashed line),RDP (dotted line), and ROPQ (solid line) as the propor-

tion of pessimistic customers increases.

In our final set of numerical experiments we consider valuations that are exchangeable but not i.i.d. by

incorporating two additional customer types: 1) pointed customers who’s valuations are all zero except for a

single item, and where the non-zero valued item is choose uniformly at random and is distributed according

to one of the three distributions described in the beginning, and 2) uniform customers who’s valuations are

the same for all of the items, and that valuation is also distributed according to one of the three distributions

described in the beginning. Specifically in Fig. 16 we consider a market where 40% of the market has

valuations drawn i.i.d., 30% of the market is pointed, and the remaining 30% of the market is uniform. As in

our previous experiments, both DP and OPQ greatly outperform SP and further, DP appears to outperform
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OPQ when the customers are primarily risk-neutral and the relationship reverses as the market becomes

more pessimistic.

Overall, our numerics support that idea that OPQ selling has comparable performance to DP in a wide

variety of markets and settings, and that the parameter α can be easily and effectively estimated.

H. Missing Examples

Example 4 (OPQ Can Earn O(N) Times More Revenue than SP). We construct an exchange-

able distribution F overN items such thatRSP ≤ 2 andROPQ ≥ αN , implying a gap between OPQ and SP on

the order of αN . Note by Theorem 3(i) this implies RDP ≤ 2 (1 + log(N)), and thus ROPQ ≥ α
2

N
1+log(N)

RDP .

To construct V ∼ F , we specify N + 1 possible valuation vectors in RN and assume that each permutation

of the specified valuation vector is equally likely. The first vector has valuations where one item is valued at

2N and all others are valued at 0. The second vector has valuations where two items are valued at 2N−1 and

all other are zero and so on. All vectors have probabilities chosen so that RSP (2N−i)≤ 2. Formally,

V =



Uniformly some permutation of (2N ,0, . . . ,0) : w.p. 2−N

Uniformly some permutation of (2N−1,2N−1,0, ...,0) : w.p. 2−(N−1)

. . .

Uniformly some permutation of (2,2, . . . ,2,2) : w.p. 2−1

Uniformly some permutation of (1,1 . . . ,1,1) : w.p. 2−N

Then RSP = maxi 2
N−iP

(
V (1) ≥ 2N−i

)
= maxi 2

N−i∑N

j=N−i 2
−j ≤ maxi 2

N−i2−N+i+1 = 2. Now we show

ROPQ ≥ αN . Let prices be pi = 2N−i+1. Now consider a pessimistic customer with V (1) = V (2) = . . .= V (i) =

2N−i+1, which occurs w.p. α2−(N−i+1). By construction V (i+1) = 0 and thus this customer purchases the size

i opaque product at price 2N−i+1. The total revenue is then

ROPQ(2N ,2N−1, . . . ,2)≥ α
N∑
i=1

2i2−i = αN.

Thus OPQ earns at least αN from pessimistic customers under this pricing strategy and ROPQ ≥ αN . �

Example 5 (Tightness of Theorem 5 when α= 1). We describe a distribution F such that

RF1OPQ/RFSP = 2 when customers are pessimistic, demonstrating tightness of Theorem 5. Fix z ∈ (0,1) and

let V1, . . . , VN be i.i.d. where

Vi =

{
1 : w.p. z
1− (1− z)N : w.p. 1− z

Then,

RSP =RSP (1) =RSP (1− (1− z)N) = 1− (1− z)N .

Similarly we compute the revenue of a 1OPQ strategy with prices (1,1− (1− z)N). In this strategy, the

opaque product is only purchased if the customer has a high valuation for all items or a low valuation for

all items. Thus,

R1OPQ(1,1− (1− z)N) = 1(1− zN − (1− z)N) + (1− (1− z)N)(zN + (1− z)N).

Then,

R1OPQ

RSP
≥ R1OPQ(1,1− (1− z)N)

RSP
=

(1− zN − (1− z)N) + (1− (1− z)N)(zN + (1− z)N)

1− (1− z)N

= 1 + zN + (1− z)N − zN

1− (1− z)N
. (2)

Then Eq. (2) can be arbitrarily close to 2 as z goes to zero. Note this example holds for any N . �
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Example 6 (Tightness of Theorem 5 when α= 0). We describe a distribution F such that

RF1OPQ/RFSP = 3
2

when customers are risk-neutral, demonstrating tightness of Theorem 5 when N = 2. Let

valuations for the two items be drawn i.i.d. according to the CDF

P(Vi ≤ x) =

√
1− 1

x
, x∈ [1,∞).

Note that for any x ∈ [1,∞), we have that P(max{V1, V2} ≤ x) = 1− 1
x

and P(max{V1, V2} ≥ x) = 1
x
. Thus

RSP = 1 since pP(max{V1, V2} ≥ p) = 1∀p∈ [1,∞) .

Now consider the 1OPQ strategy (p,1) for p > 1. To compute R1OPQ(p,1), let V (1) = maxi{Vi}, V (2) =

mini{Vi}, u= V (1)− p, and u2 = V (1)+V (2)

2
− 1. Note that u and u2 are the utilities of buying the best item

or the opaque product, respectively. By conditioning on the event V (1) ≥ p, we show that

R1OPQ

RSP
≥R1OPQ(p,1)

= P(V (1) ≥ p)
(
pP(u≥ (u2)+|V (1) ≥ p) +P(u2 > (u)+|V (1) ≥ p)

)
+P(V (1) < p)

(
pP(u≥ (u2)+|V (1) < p) +P(u2 > (u)+|V (1) < p)

)
= P(V (1) ≥ p)(pP(V (1)−V (2) ≥ 2p− 2|V (1) ≥ p) +P(V (1)−V (2) < 2p− 2|V (1) ≥ p))

+P(V (1) < p)(pP(V (1)−V (2) ≥ 2p− 2|V (1) < p) +P(V (1)−V (2) < 2p− 2|V (1) < p))

= P(V (1) ≥ p)(pP(V (1)−V (2) ≥ 2p− 2|V (1) ≥ p) +P(V (1)−V (2) < 2p− 2|V (1) ≥ p))

+P(V (1) < p)

=
1

p
(pP(V (1)−V (2) ≥ 2p− 2|V (1) ≥ p) +P(V (1)−V (2) ≤ 2p− 2|V (1) ≥ p)) + (1− 1

p
)

≥ P(V (1) ≥ 2p− 2|V (1) ≥ p) +
1

p
P(V (1)−V (2) ≤ 2p− 2|V (1) ≥ p) + 1− 1

p

=
1

2p−2
1
p

+
1

p
P(V (1)−V (2) ≤ 2p− 2|V (1) ≥ p) + 1− 1

p
(3)

The first inequality follows since RSP = 1 and (p,1) is feasible for 1OPQ. The first equality follows from

the definition of R1OPQ(p,1) conditioning on V (1) ≥ p. The second equality follows from the definitions of

u and u2. The third equality follows from the fact that V (2) ≥ 1 combined with the case where V (1) < p.

The fourth equality follows from the distribution F . The second inequality follows since V (2) ≥ 0. The last

equality follows from Bayes rule. As p goes to ∞, the expression in Eq. (3) goes to 3
2
, matching the upper

bound in Theorem 5. �

I. Missing Proofs

I.1. Proof of Corollary 1.

Case (i): From the proof of Theorem 1(i), the revenue from OPQ dominates the revenue under SP

conditional on every ordering of the valuations. When VN = V (1), only the highest-valued item can be

purchased under DP . Conditional on this event, the revenue from DP is clearly at most RSP . Thus,

RDP ≤
N − 1

N
ROPQ +

1

N
RSP =

N − 1

N
ROPQ +

1

N +Nγ
RDP .

Rearranging the inequality gives the result.
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Case (ii): Recall from the proof Theorem 1(ii) that w.l.o.g. we may assume F is supported on {1,1+ δ}.
Suppose the OPQ prices are pi = 1 + δ for i <N and pN = 1. Recall that U is a r.v. denoting the number of

items for which the customer has a valuation of 1 + δ. A pessimistic customers buys an item at a price of

1 + δ if 1≤U ≤N − 1 and the opaque product of size N at price 1 otherwise. Letting ui = P(U = i), then

ROPQ ≥ 1 + δ(1−u0−uN). (4)

Similarly from Eq. (7) in Appendix I.6 we have that

RDP = 1 + δ

N−1∑
qi=1

N − i
N

ui ≤ 1 + δ
N − 1

N
(1−u0−uN).

Now since RDP = (1 + γ)RSP and RSP ≥RSP (1) = 1, then

δ
N − 1

N
(1−u0−uN)≥ γRSP .

Combining these inequalities with Eq. (4) we obtain

ROPQ ≥ 1 + δ(1−u0−uN)

≥RDP +
1

N
δ(1−u0−uN)

≥RDP +
γ

N − 1
RSP =

(
1 +

γ

(N − 1)(1 + γ)

)
RDP

When customers are risk-neutral, they always purchase the opaque product of size N garnering revenue

1. Thus ROPQ ≥ α
(

1 + γ

(N−1)(1+γ)

)
RDP + 1−α. Thus when α≥ 1− γ

γN+N−1 we obtain ROPQ >RDP . �

I.2. Proof of Theorem 2

We divide the proof of Theorem 2 into two lemmas. Lemma 2 states that when customers are purely pes-

simistic ROPQ ≤ 3RSP . Lemma 4 states that when customers are purely risk-neutral ROPQ ≤
(
4− 2

N

)
RSP .

To obtain Theorem 2, we relax OPQ to observe Xα and price pessimistic and risk-neutral customers sepa-

rately. Using Lemmas 2 and 4, we get that ROPQ ≤
(
α · 3 + (1−α)

(
4− 2

N

))
RSP which proves the desired

result.

Lemma 2. Assume all customers are pessimistic. Then when item valuations are i.i.d.,

ROPQ ≤ 3RSP .

The proof of Lemma 2, found in Appendix I.3, relies on connecting the revenue generated by OPQ to a

Myerson auction, and makes use of the following lemma.

Lemma 3 (Chawla et al. (2010) Theorem 8). Let RM be the expected revenue from the Myerson auc-

tion for one item, run on N bidders with i.i.d. valuations. Then

RM ≤ 2RSP .

We now consider the case of risk-neutral customers in Lemma 4.

Lemma 4. Assume all customers are risk-neutral. When item valuations are i.i.d., then

ROPQ ≤
(

4− 2

N

)
RSP .
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The proof of Lemma 2 bounds the revenue from exponentially many opaque products by the highest

valuation any opaque product could receive from a pessimistic customer. We noted that the highest valuation

for an opaque product is bounded by the expected value of a second price auction, which allowed us to apply

Lemma 3. Such an argument fails for risk-neutral customers since valuations for opaque products can be

higher than V (2), the second order statistic of V . To circumvent this difficulty, we recast opaque selling with

risk-neutral customers in the language of lotteries.

Definition 3. A lottery over N items denoted by (p, ~q) consists of a price p and probabilities qi for

receiving each item i, s.t.
∑N

i=1 qi ≤ 1.

A customer with valuation vector ~v values a lottery (p, ~q) as
∑n

i=1 viqi− p. Note that selling lotteries can

simulate deterministic item pricing by defining N lotteries where lottery li = (p, ei), where ei is the ith unit

vector. An opaque product over a set S can be cast as a lottery with price p|S| and allocation probabilities

qi = 1
|S| for each i ∈ S and qi = 0 for each i /∈ S. We call a collection of offered lotteries a lottery pricing,

denoted by L. Using this framework, we can prove that OPQ can obtain at most 4− 2
N

times more revenue

than SP. The proof can be found in Appendix I.4, draws on lottery pricing results of Chawla et al. (2015),

who proved an upper bound of 4 in their setting.

I.3. Proof of Lemma 2

Proof. Let (p, ~p) denote the prices of an optimal OPQ strategy under F , where p is the price of items

and ~p are the prices of the opaque products. The proof follows by separately bounding revenue from items

priced at p and the the revenue from opaque products. Let V (k) be the kth order statistic (counting so that

V (1) = maxi{Vi}), and note that the highest valuation a customer has for opaque products of size k is just

V (k). Then,

ROPQ = pP(V (1)− p≥ max
k=2,...,N

{V (k)− pk,0}) +

N∑
k=2

pkP (buys opaque product of size k)

≤ pP(V (1)− p≥ 0) +

N∑
k=2

pkP (buys opaque product of size k)

≤ pP(V (1)− p≥ 0) +E[V (2)]

≤RSP +E[V (2)]

≤RSP +RM

≤ 3RSP .

The equality follows from the definitions of ROPQ, p, and ~p. The first inequality follows from non-negativity

of maxk=2,...,N{V (k) − pk,0}. The second inequality follows from realizing that the highest valued opaque

product is valued at V (2), and thus customers pay at most V (2) when buying an opaque product. The third

inequality follows from the optimality of RSP . The fourth inequality follows from the fact that E[V (2)] is

the revenue of a second price auction, which is at most the revenue of the optimal (Myerson) auction. The

final inequality follows from Lemma 3. �
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I.4. Proof of Lemma 4

The proof is based on following lemma which makes a fundamental connection between lottery pricings and

the Myerson auctions.

Lemma 5 (Lemmas 3 and 4 in Chawla et al. (2015)). Consider a customer with a valuation draw ~v

and let i∗ = argmaxivi. Let L be a lottery pricing such that the custo mer buys lottery (p, q1, . . . , qN) = l ∈L.

Let M be the Myerson auction for one item, run on N bidders with valuations drawn from F . Then

RL(~v)≤RM(~v) +
∑
i 6=i∗

qivi.

where RL(~v) and RM(~v) denote the revenue earned by the lottery pricing and Myerson auction when the

valuation draw is ~v.

Proof. Let (p, ~p) denote the prices of an optimal OPQ strategy under F , where p is the price of items

and ~p are the prices of the opaque products. Note that every opaque product S can be written as a lottery

with the same price and a uniform allocation probability over S. Furthermore, we can describe the items as

N individual lotteries, each priced at p with a deterministic allocation. Thus for risk-neutral customers, our

opaque selling strategy can be recast as a lottery pricing which we call LOPQ, i.e.,

ROPQ =RLOPQ .

From Lemma 5, we have that

RLOPQ(~v)≤RM(~v) +
∑
i 6=i∗

qivi. (5)

We note that if a customer with valuation ~v and i∗ = argmaxivi purchases an item, then
∑

i 6=i∗ qivi = 0 since

qi∗ = 1. Otherwise if an opaque product is purchased,
∑

i6=i∗ qi ≤
N−1
N

and vi ≤ v(2) for i 6= i∗. Combining

these facts with Eq. (5) yields

RLOPQ(~v)≤RM(~v) +
N − 1

N
v(2). (6)

Thus

ROPQ ≤RM+
N − 1

N
E[V (2)]

≤RM+
N − 1

N
RM

≤ (4− 2

N
)RSP

The first inequality follows from taking the expectation of Eq. (6) over ~v. The second inequality follows

from the fact that E[V (2)] is the revenue of a second price auction, which is dominated by the Myerson

auction. The third inequality follows from Lemma 3. �
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I.5. Proof of Theorem 3

Proof. First we prove part (i). Fix an exchangeable distribution F over N items. For ease of exposition

we assume F is continuous and ignore ties, although the same argument follows when F is not continuous

and one carefully considers the tie-breaking procedure. Let p1 ≥ p2 ≥ . . .≥ pN be the optimal discriminatory

pricing and let q1, q2, . . . , qN be the probability item 1,2, . . . ,N is sold under this pricing. Define Qi = {v ∈
supp(F ) |vi− pi ≥ (vj − pj)+ ∀j}. Note that qi = P(Qi). Let σi,j : RN →RN be the map that interchanges vi

and vj in a vector v.

We first observe that P(σi,j(Qi)) = qi by exchangeability. Further, for all i < j and any v ∈Qi, notice that

σi,j(v) /∈Qi since pi ≥ pj . With that established note,

P(V (1) ≥ pi)≥ P(∪j≥iσi,j(Qi)) =∪j≥iP(σi,j(Qi)) = (N − i+ 1)qi.

In words, the above equation says the probability the highest valuation is greater than pi is lower bounded

by the probability of selling item i under a discriminatory pricing, union with disjoint permutations of the

event. Using this observation we can bound the gap between RSP and RDP as

RDP
RSP

≤
∑N

i=1 qipi
maxi P(V (1) ≥ pi)pi

≤
∑N

i=1 qipi
maxi(N − i+ 1)qipi

≤HN .

The final inequality follows from Lemma 6 in Appendix J with C1 = 0,C2 = 1, K = 1, and HN is the N th

harmonic number. Recalling the fact that HN ≤ 1 + log(N) yields the result.

Part (ii) follows from the observation that one of the N prices in an optimal opaque selling strategy garners

the most revenue. Call that price pi and let qi be the probability an opaque product of size i is sold. Then

we must have that qi ≤ P(V (1) ≥ pi) and thus piqi ≤RSP (pi)≤RSP . Therefore, ROPQ ≤Npiqi ≤NRSP .

Part (iii) follows from combining Example 4 with part (i). �

I.6. Proof of Theorem 4

Proof. Let F be an exchangeable distribution where item valuations can take only two points {a, b} where

a < b, and suppose the market is α-mixed. Recall for distributions supported on two points the optimal

discriminatory pricing uses prices ~p= (a,a, . . . , a), (b, b, . . . , b) or a mixed pricing where exactly one price (since

F is exchangeable it doesn’t matter which price) is low (a, b, b, . . . , b). If either (a,a, . . . , a) or (b, b, . . . , b) is the

the optimal discriminatory pricing given F , then RSP =RDP and the claim follows automatically. Suppose

RDP >RSP , then the optimal pricing is the mixed strategy and, under a mixed pricing, a discriminatory

selling strategy always sells the item. Further we restrict ourselves to 1OPQ strategies that always sell the

item, thus we may normalize the support of F to {1,1 + δ} without changing the ratio RDP

R1OPQ
.

Define U to be the random variable supported on {1, . . . ,N} such that P (U = i) =

P
(
V (i) = 1 + δ,V (i+1) = 1

)
where V (i) is the ith highest order statistic of F . In words, U is the random

variable for how many of the N valuations are equal to 1 + δ. Recall since F is exchangeable, if U = i then

all
(
N

i

)
arrangements of valuations over the N items are equally likely (thus knowing the distribution of U

is equivalent to knowing F in a two point setting). Let ui := P(U = i). Conditioning on U we can compute

RDP as

RDP =E[RDP (1,1 + δ, . . . ,1 + δ) |U = i] = u0 +

N∑
i=1

ui

(
i

N
+
N − i
N

(1 + δ)

)
= 1 + δ

N∑
i=1

N − i
N

ui (7)
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where the second equality follows from Eq. (1).

For each i= 1, . . . ,N , we shall lower bound the 1OPQ pricing strategies (p, pN) = (1+ N−i
N
δ,1). To analyze

the revenue from such a pricing, first note a pessimistic customers always buy an item at price 1 + N−i
N
δ for

any 1OPQ pricing (1 + N−i
N
δ,1) as long as U 6= 0,N , and the opaque product otherwise. Thus a pessimistic

customer has expected revenue 1 + (1−u0−uN)N−i
N
δ.

For risk-neutral customers and 1OPQ pricing (1 + N−i
N
δ,1), customers will purchase an item at price

1 + N−i
N
δ if 0<U ≤ i,U 6=N , and the opaque product otherwise. Thus a risk-neutral customer has expected

revenue 1 + N−i
N
δ
∑min(N−1,i)

j=1 uj . Putting them together we have

R1OPQ ≥ 1 + max
i∈[N]

α(1−u0−uN)
N − i
N

δ+ (1−α)
N − i
N

δ

min(N−1,i)∑
j=1

uj

= 1 + max
i∈[N]

N − i
N

δ (1−u0−uN)

(
α+

1−α
1−u0−uN

min(N−1,i)∑
j=1

uj

)
.

≥ 1 + max
i∈[N]

N − i
N

δ

min(N−1,i)∑
j=1

uj

= 1 + max
i∈[N]

N − i
N

δ

i∑
j=1

uj (8)

where the second inequality follows from noting Eq. (8) is an increasing function of α and then plugging in

α= 0. The second equality follows since i=N is not the maximizer. Let u′i = ui

1−u0
so that

∑N

i=1 u
′
i = 1. Then

RDP
R1OPQ

≤
1 + δ

∑N

i=1
N−i
N
ui

1 + δmaxi∈[N]
N−i
N

∑i

j=1 uj
=

1 + δ(1−u0)
∑N

i=1
N−i
N
u′i

1 + δ(1−u0) maxi∈[N]
N−i
N

∑i

j=1 u
′
j

≤
1 + (1−u0)δ

N
HN−1

1 + (1−u0)δ

N

.

The first inequality follows from Eq. (7) and Eq. (8). The second inequality follows from applying Lemma 7

(under the appropriate change of variables i.e. relabeling xi→ xN−i) where HN−1 is the (N − 1)th harmonic

number. Lastly note that

RDP
R1OPQ

≤ RDP
RSP (1 + δ)

≤ 1 + δ(1−u0)

(1−u0)(1 + δ)
≤ 1 + δ(1−u0)

(1−u0)δ
.

The first inequality follows from observing that R1OPQ earns as much as a SP strategy with price 1 + δ,

which has expected revenue (1− u0)(1 + δ). The second inequality follows from a simple upper bound on

Eq. (7). Define C = (1−u0)δ and putting it all together we have,

RDP
R1OPQ

≤ max
N∈N,C>0

min

(
1 +C

C
,
1 +C

1+HN−1

N

1 + C
N

)
(9)

which can be checked to be maximized when N = 7,C = 2
29

(
5 + 4

√
65
)

yielding a ratio ≥ .719.

I.7. Proof of Theorem 5.

Proof. We divide the proof of Theorem 2 into two parts. First we show that when customers are

purely pessimistic, R1OPQ ≤ 2RSP . Second we show that when customers are purely risk-neutral R1OPQ ≤
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(
2− 1

N

)
RSP . To obtain the result, we relax 1OPQ to observe Xα and price pessimistic and risk-neutral cus-

tomers separately. Using the previously mentioned results, we get thatR1OPQ ≤
(
α · 2 + (1−α)

(
2− 1

N

))
RSP

which is equivalent to the desired result.

First we prove that R1OPQ ≤ 2RSP when customers are all pessimistic (α= 1). Fix a distribution F and

let (p, pN) be an optimal solution corresponding to RF1OPQ. Then

R1OPQ =R1OPQ(p, pN)

= pP(max
i
{Vi− p} ≥min

i
{Vi− pN ,0}) + pNP(V N − pN >max

i
{Vi− p}∩V N − pN ≥ 0)

≤ pP(max
i
{Vi− p} ≥ 0) + pNP(max

i
{Vi− pN} ≥ 0)

=RSP (p) +RSP (pN)

≤ 2RSP .

The second equation follows from the definition of R1OPQ(p, pN) and breaks ties by choosing to buy an item

versus an opaque product. The first inequality follows from increasing the size of the event being measured.

The second inequality follows from the fact that p and pN are feasible solutions to SP. For tightness, see

Example 5.

Now we focus on the case when customers are all risk-neutral (α= 0) and show R1OPQ ≤ (2− 1
N

)RSP . Fix

a distribution F and let (p, pN) be an optimal solution corresponding to RF1OPQ. Our proof breaks into two

cases depending on the relative gap between p and pN , corresponding to pN ≥ 1
N
p (Case 1) and pN < 1

N
p

(Case 2). Fig. 17 illustrates the geometric difference in the two cases for N = 2 items.

Case 1: Recall in this case, pN ≥ 1
N
p. We first define qA, qB, qC , qD to be the probabilities corresponding

to the following disjoint events under F , namely

qA = P(max{Vi}− p≥
∑
Vi
N
− pN ,max{Vi} ≥ p)

qB = P(max{Vi}− p <
∑
Vi
N
− pN ,max{Vi} ≥ p)

qC = P(max{Vi}< p,
∑
Vi
N
≥ pN)

qD = P(max{Vi}< p,
∑N

i=1 Vi
N

<pN).

Note that qA + qB + qC + qD = 1. Using these probabilities, we have that RF1OPQ(p, pN) = pqA + pN(qB + qC).

Further, we can express the revenues from the single pricing approximately as RFSP (p) = p(qA + qB) and

RFSP (pN) = pNP(max{Vi} ≥ pN)≥ pN(qA + qB + qC). Thus we have

RF1OPQ
RFSP

≤
RF1OPQ(p, pN)

max{RFSP (p),RFSP (pN)}
(10)

≤ pqA + pN(qB + qC)

max{p(qA + qB), pN(qA + qB + qC)}
(11)

≤ max
a,b,c,d≥0
a+b+c+d=1
x≥y≥ x

N
≥0

xa+ y(b+ c)

max{x(a+ b), y(a+ b+ c)}
. (12)
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Figure 17 Visualization of the two cases for the proof of Theorem 5

(a) The case where p2 ≥ 1
2
p. (b) The case where p2 < 1

2
p.

Note. These figures demonstrate the partition of the valuation space for a risk-neutral customer when N = 2. In both

figures, p= 4. The left figure corresponds to a small discount for the opaque product and the right figure corresponds

to a large discount for the opaque product. The four letters denote different buying behaviors of the customer under

a (p, pN ) 1OPQ strategy and a SP strategy with price p.

The first inequality follows from the fact that p and pN are feasible for SP. The second inequality follows

from the previous discussion. The third inequality follows from the fact that (p, pN , qA, qB, qC , qD) is a

feasible solution to the optimization problem in Eq. (12), which we denote by OPT . Lemma 8, proved

separately, shows that OPT ≤ 2− 1
N

. Combining Lemma 8 with Equations Eq. (10))-Eq. (12) completes the

proof for the case of pN ≥ 1
N
p.

Case 2: Recall in this case, pN < 1
N
p, where (p, pN) are optimal prices corresponding to RF1OPQ. We

partition the valuation space under F according to the events

E0 = {max{Vi}< pN}

E1 = {pN ≤max{Vi}< p}

E2 = {p≤max{Vi}<
N

N − 1
(p− pN)}

E3 = { N

N − 1
(p− pN)≤max{Vi}}.

We upper bound the revenue from single opaque selling using this partition. Customers lying in E0 do not

generate any revenue. The revenue generated by customers lying in E1 is at most pNP(E1) since they never

consider buying an item at price p. The revenue generated by customers lying in E3 is at most pP(E3) since

the best case scenario is that they all buy an item at price p. Lemma 9, proved separately, shows that the

customers lying in E2 buy the opaque product at price pN . Combining the previous arguments shows that

R1OPQ(p, pN)≤ pP(E3) + pN(P(E2) +P(E1)). (13)
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Now suppose for contradiction that R1OPQ(p, pN) =R1OPQ > (2− 1
N

)RSP . Then the following two inequali-

ties must also hold:

R1OPQ(p, pN)> (2− 1

N
)RSP

(
N

N − 1
(p− pN)

)
= (2− 1

N
)

(
N

N − 1
(p− pN)P(E3)

)
(14)

R1OPQ(p, pN)> (2− 1

N
)RSP

(
pN
)

= (2− 1

N
)(pN)(1−P(E0)) (15)

by the optimality of RSP . Now define δ′ = (p − pN)/p. Then combining the Eq. (14) and Eq. (15) with

Eq. (13) and dividing by p yields

1−P(E0)− δ′(1−P(E3)−P(E0)) = 1− δ′− (1− δ′)P(E0) + δ′P(E3)>
2N − 1

N − 1
δ′P(E3) (16)

1−P(E0)− δ′(1−P(E3)−P(E0)) = 1− δ′− (1− δ′)P(E0) + δ′P(E3)>
2N − 1

N
(1− δ′)(1−P(E0)) (17)

Rearranging Eq. (16) yields

1− δ′− (1− δ′)P(E0)>
N

N − 1
δ′P(E3)

and rearranging Eq. (17) yields

1− δ′− (1− δ′)P(E0)<
N

N − 1
δ′P(E3),

which is a contradiction and thus R1OPQ ≤ 2N−1
N
RSP . For tightness when N = 2, see Example 6. �

J. Auxiliary Lemmas

Lemma 6. For any x1, . . . , xN ≥ 0,
∑

i
xi ≤K, and constants C1,C2 ≥ 0,

C1 +C2

∑
i xi

C1 +C2 maxi ixi
≤ C1 +C2KHN

C1 +C2K
. (18)

Proof. We first claim that the left hand side of Eq. (18), viewed as an optimization problem over all

feasible ~x is maximized when ixi = jxj for all i, j. To prove this, suppose ~x ∈ [0,K]N maximizes the left

hand side of Eq. (18) and suppose the claim does not hold. Let i= arg maxk kxk and j = arg mink kxk, so by

assumption ixi > jxj . Define yi, yj as solutions to the following system of two linear equations:

yi + yj = xi +xj

iyi = jyj

This yields iyi = jyj =
ij(xi+xj)

i+j
which can be rewritten as iyi = iyi = i

i+j
jxj+ j

i+j
ixi, a weighted average of ixi

and jxj . Consider the maximal solution with components xi, xj replaced by yi, yj . Since yi+yj = xi+xj , the

numerator in the l.h.s. of Eq. (18) is unchanged. However since max{iyi, jyj}< ixi, the denominator strictly

decreases (in the case of many indices’s that maximize kxk, iterating the argument at most N − 1 times

yields a strict reduction) contradicting the optimality of ~x. Thus Eq. (18) is maximized when ixi = jxj∀i, j.

Solving for the worst case ~x gives xi = x1
i

, and plugging in gives

max
~x

C1 +C2

∑
i xi

C1 +C2 maxi ixi
≤
C1 +C2x1

∑N

i=1
1
i

C1 +C2x1

≤ C1 +C2KHN

C1 +C2K
. (19)

�
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Lemma 7. For any x1, . . . , xN−1 ≥ 0, such that
∑

i
xi ≤ 1, and constant C ≥ 0,

1 +C
∑N−1

i=1 ixi

1 +Cmaxi i
∑N−1

k=i xk
≤ 1 +CHN−1

1 +C
. (20)

Proof. We first claim that the left hand side of Eq. (20), as a function of ~x, is maximized when i
∑N−1

k=i xk ≤

(i+ 1)
∑N−1

k=i+1 xk for all i ≤ N − 2. To prove this, let ~x be the maximizing vector and suppose the claim

does not hold. For notational convenience, define Si =
∑N−1

k=i xk, and let j be the smallest index such that

jSj > (j + 1)Sj+1. Note by subtracting jSj+1 from both sides, it follows that j satisfies jxj > Sj+1. Define

a new vector ~y that is the same as ~x except for yj , yj+1 which is the solution to the following system of

equations:

jyj = yj+1 +Sj+2

yj + yj+1 = xj +xj+1.

Note that this has a solution where yj < xj and yj+1 > xj+1. We shall show that ~y results in a higher ratio

than x, contradicting the optimality of ~x. Since yj+yj+1 = xj+xj+1 and yj+1 >xj+1, then jyj+(j+1)yj+1 >

jxj+(j+1)xj+1 which implies that the numerator of Eq. (20) is strictly increased under ~y. Next we argue that

the denominator does not change. To see this, first observe that i
∑N−1

k=i yk = i
∑N−1

k=i xk for all i 6= j+1. Since

yj +yj+1 = xj +xj+1 and jyj = yj+1 +Sj+2, then j
∑N−1

k=j xk = j(yj +yj+1)+jSj+2 = (j+1)yj+1 +(j+1)Sj+2

and thus the denominator is unchanged under ~y. Thus ~y has an increased the value of Eq. (20), contradicting

the maximality of ~x.

Thus we may assume w.l.o.g kSk ≤ (k+ 1)Sk+1 for any set x1, . . . , xN−1 that maximizes Eq. (20), which

in turn implies kxk ≤ Sk+1 ≤ Sk for all k≤N . Thus

1 +C
∑N−1

i=1 ixi

1 +Cmaxi i
∑N−1

k=i xk
≤

1 +C
∑N−1

i=1 Si
1 +Cmaxi iSi

≤ 1 +CS1HN−1

1 +CS1

≤ 1 +CHN−1

1 +C
. (21)

The first inequality follows from kxk ≤ Sk+1 ≤ Sk, the second inequality follows from Lemma 6, and the third

in+equality from the fact that S1 =
∑N−1

k=1 xi ≤ 1. �

Lemma 8. OPT ≤ 2− 1
N

.

Proof. First note for any optimal solution v∗ = (x, y, a, b, c, d) we may assume w.l.o.g. that d= 0 (if d> 0

consider v′ where (a′, b′, c′) = (a, b, c)/(1−d) and d’ = 0). We may also scale x to 1 w.l.o.g. Then OPT is the

solution of

max
a+ y(1− a)

z

s.t z ≥ y

z ≥ a+ b

0≤ 1

N
≤ y≤ 1

a+ b+ c= 1

y, a, b, c≥ 0
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At optimality either z = y ≥ a+ b or z = a+ b ≥ y. Suppose z = y, then the objective becomes 1 + a−ay
y

,

which is maximized when a is maximal. Thus the constraint a + b ≤ y forces b = 0 and a = y. Subbing

in, then OPT = maxy≥ 1
N

1 + (1− y) y
y

= 2− 1
N

. Similarly, suppose z = a+ b ≥ y which implies c ≤ 1− y,

then the objective becomes a+y(b+c)

1−c which is maximized when c = 1− y, a = y, and b = 0. Thus OPT =

maxy≥ 1
N

y+y(1−y)
y

= maxy≥ 1
N

2− y= 2− 1
N

. �

Lemma 9. Any customer ~v ∈ E2 buys the opaque product in the 1OPQ strategy (p, pN).

Proof. Suppose a customer draws valuation (v1, v2, . . . , vN) ∈ E2, then maxi{vi} = p+ k, for some k ∈

[0, N
N−1 (p− pN)− p). Then

max
i
{vi}− p= k=

k

N
+

(N − 1)k

N
<
k

N
+ p− pN − pN − 1

N
=
k+ p

N
− pN =

maxi vi
N

− pN ≤
∑

i
vi

N
− pN

where the first inequality follows from the definition of k, and the second inequality follows from the fact

that
∑

i
vi ≥maxi vi. Thus the utility from any item at price p, maxi{vi} − p, is less than

∑
i vi

N
− pN , the

utility from the opaque product. We also note that the utility from the opaque product is nonnegative, since∑
i vi

N
− pN ≥ k+p

N
− pN ≥ 0, where the last inequality follows from the case assumption pN < 1

N
p. �

Lemma 10. Let F be a distribution over m customer types. Let ~p be a revenue optimal pricing and

suppose that p1 ≥ p2 ≥ . . . ≥ pN . Then for all i ∈ [N ], either there exists a type j such that pi = vj,i −

maxk>i{(vj,k− pk)+}, or no customer type buys item i.

Proof. Let ~p be the optimal prices with p1 ≥ . . .≥ pN , and let ṽj,i = vj,i −maxk>i (vj,k− pk)+. Suppose

for a contradiction that there exists an item i (choose largest index if there are multiple options) that is

purchased by a customer type, but pi /∈ {ṽ1,i, . . . , ṽm,i}. Call the customer type that purchases item i as type

j, and if there are multiple options select the type with smallest ṽ·,i. Note that pi < ṽj,i, since the reverse

inequality implies type j would prefer to buy a different item (or no item) based on the definition of ṽj,i.

We now consider an alternate pricing scheme ~p ′ where all prices are the same except p′i = ṽj,i, which is a

price increase. Under ~p ′, clearly all customers who purchased an item other than i will still purchase that item

due to the price increase of i. The type j customer will buy an item with index at most i, since his favorite

among the items with index greater than or equal to i is i under the new pricing (recall ties go the higher

priced item), i.e., vj,i − p′i = maxk>i (vj,k− pk)+. Now consider a type l 6= j that also purchased i under the

pricing ~p. Then vl,i−p′i = ṽl,i+maxk>i (vl,k− pk)+−p′i ≥ ṽj,i+maxk>i (vl,k− pk)+−p′i = maxk>i (vl,k− pk)+,

where the inequality follows since j was chosen to have the smallest ṽ·,i. Thus l, like j, also prefers an item

with index i or lower. Therefore, ~p ′ is a pricing with strictly better revenue, resulting in a contradiction of

the optimality of ~p. �
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